(Approximately) Optimal Impartial Selection

Felix Fischer

Statistical Laboratory, University of Cambridge fischerf@statslab.cam.ac.uk

(joint work with Max Klimm, TU Berlin)

October 17, 2013

Impartial Selection

- Select member of a set of agents based on nominations by agents from the same set
- Applications
 - selection of representatives
 - award of a prize
 - assignment of responsibilities
 - peer review: papers, research proposals, . . .
- Assumption: agents are impartial to the selection of other agents
 - will reveal their opinion truthfully...
 - as long as it does not affect their own chance of selection
- Goal: preserve impartiality, select agent with many nominations

A Formal Model

- Set G of graphs (N, E) without self loops vertices represent agents, (i, j) ∈ E means i nominates j
- ▶ $\delta_S^-(i,G) = |\{(j,i) \in E : G = (N,E), j \in S\}|$ number of nominations $i \in N$ receives (indegree) from $S \subseteq N$
- ▶ selection mechanism: maps each $G \in G$ to distribution on N
- ▶ f is impartial if

$$(f((N,E)))_i = (f((N,E')))_i$$
 if $E \setminus (\{i\} \times V) = E' \setminus (\{i\} \times V)$

▶ *f* is α -optimal, for $\alpha \leq 1$, if for all $G \in \mathcal{G}$,

$$\frac{\mathbb{E}_{i \sim f(G)}[\delta_N^-(i,G)]}{\Delta(G)} \geq \alpha,$$

where
$$\Delta(G) = \max_{i \in N} \delta_N^-(i, G)$$

Related Work

- Impartial Nominations for a Prize (Moulin, Holzman)
 - plurality, deterministic mechanisms, axiomatic study
- Strategyproof Selection from the Selectors (Alon et al.)
 - approval, deterministic and randomized mechanisms, selection of k agents with large number of nominations
- Impartial Division of a Dollar (de Clippel et al.)
 - more general than randomized mechanisms, axiomatic study
- Plurality: one nomination per agent (outdegree one)
- Approval: zero or more nominations (arbitrary outdegree)

Related Work

- Impartial Nominations for a Prize (Moulin, Holzman)
 - plurality, deterministic mechanisms, axiomatic study
- Strategyproof Selection from the Selectors (Alon et al.)
 - approval, deterministic and randomized mechanisms, selection of k agents with large number of nominations
- Impartial Division of a Dollar (de Clippel et al.)
 - more general than randomized mechanisms, axiomatic study

	approval	plurality
deterministic	0	1/ <i>n</i>
randomized	[1/4, 1/2]	?

Related Work

- Impartial Nominations for a Prize (Moulin, Holzman)
 - plurality, deterministic mechanisms, axiomatic study
- Strategyproof Selection from the Selectors (Alon et al.)
 - approval, deterministic and randomized mechanisms, selection of k agents with large number of nominations
- Impartial Division of a Dollar (de Clippel et al.)
 - more general than randomized mechanisms, axiomatic study

	approval	plurality	≤ 1/2
deterministic	0	1/ <i>n</i>	31/2
randomized	[1/4, 1/2]	?	< 1/2

Outline and Results

- 1/2-optimal mechanism for approval
- same mechanism is 7/12-optimal for plurality (may actually be 2/3-optimal, but not better)
- upper bound for plurality of roughly 3/4
- Lower bounds from
 - better analysis of the mechanism of Alon et al.
 - generalization of the analysis to a (fairly) natural generalization of the mechanism
- Upper bound from optimization approach to finding mechanisms

The 2-Partition Mechanism (Alon et al.)

- ▶ Randomly partition N into (S_1, S_2)
- ► Select $i \in \arg\max_{i' \in S_2} \delta_{S_1}^-(i', G)$ uniformly at random
- ► 1/4-optimal
 - ▶ consider any $G \in \mathcal{G}$ and vertex i^* with degree $\Delta = \Delta(G)$
 - ▶ $i^* \in S_2$ with probability 1/2
 - $\mathbb{E}[\delta_{S_n}^-(i,G) | i^* \in S_2] = \Delta/2$
 - ▶ vertex selected when $i^* \in S_2$ has at least this degree
- Tight for graph with a single edge
- Not obvious how to improve this, and by which analysis

The 2-Partition Mechanism (Revisited)

- Consider vertex i* with degree Δ
- ▶ Randomly partition $N \setminus \{i^*\}$ into (S_1, S_2)
- ▶ Based on (S_1, S_2) adversary chooses $d = \max_{i \in S_2} \delta_{S_1}^-(i, G)$
- i^* goes to S_1 or S_2 with probability 1/2 each
- ▶ Depending on $d^* = \delta_{S_1}^-(i^*, G)$, adversary will
 - ▶ set d to 0 and let i* win with probability 1/2
 - ▶ set *d* to d^* and beat i^* (assume ties broken against i^*)
- Selected vertex has expected degree min {Δ/2, d*}
- Sum over distribution of d*

The 2-Partition Mechanism (Revisited)

- Consider vertex i* with degree Δ
- ▶ Randomly partition $N \setminus \{i^*\}$ into (S_1, S_2)
- ▶ Based on (S_1, S_2) adversary chooses $d = \max_{i \in S_2} \delta_{S_1}^-(i, G)$
- i^* goes to S_1 or S_2 with probability 1/2 each
- ▶ Depending on $d^* = \delta_{S_i}^-(i^*, G)$, adversary will
 - ▶ set d to 0 and let i* win with probability 1/2
 - ▶ set *d* to d^* and beat i^* (assume ties broken against i^*)
- Selected vertex has expected degree min {Δ/2, d*}
- Sum over distribution of d*
- ▶ Parameterized lower bound $\alpha(\Delta)$ in closed form
 - ightharpoonup non-decreasing in Δ
 - $\alpha(1) = 1/4$
 - $\alpha(2) = 3/8$

The 2-Partition Mechanism (Revisited)

- Consider vertex i* with degree Δ
- ▶ Randomly partition $N \setminus \{i^*\}$ into (S_1, S_2)
- ▶ Based on (S_1, S_2) adversary chooses $d = \max_{i \in S_2} \delta_{S_1}^-(i, G)$
- i^* goes to S_1 or S_2 with probability 1/2 each
- ▶ Depending on $d^* = \delta_{S_i}^-(i^*, G)$, adversary will
 - ▶ set d to 0 and let i* win with probability 1/2
 - ▶ set *d* to d^* and beat i^* (assume ties broken against i^*)
- Selected vertex has expected degree min {Δ/2, d*}
- Sum over distribution of d*
- ▶ Parameterized lower bound $\alpha(\Delta)$ in closed form
 - ightharpoonup non-decreasing in Δ
 - $\alpha(1) = 1/4$
 - $\sim \alpha(2) = 3/8$

The k-Partition Mechanism

```
randomly partition N into (S_1,\ldots,S_k), denote S_{< j} = \bigcup_{i < j} S_i i^* := \bot, d^* := 0 for j = 2,\ldots,k if \max_{i \in S_j} \delta_{S_{< j} \setminus \{i^*\}}^-(i,G) \ge d^* choose i \in \arg\max_{i' \in S_j} \delta_{S_{< j}}^-(i',G) uniformly at random i^* := i, d^* := \delta_{S_{< j}}^-(i,G) select i^*
```

▶ Goal: parameterized lower bound $\alpha_k(\Delta)$

The k-Partition Mechanism

- Consider vertex i* with degree Δ
- ▶ Randomly partition $N \setminus \{i^*\}$ into $(S_1, ..., S_k)$
- ▶ For j = 2, ..., k, adversary decides to beat i^* or let it win if $i^* \in S_j$
- \triangleright *i** goes to each S_i with probability 1/k
- Only rightmost alternative to beat i* matters, as that alternative (or i*) is selected
- ▶ For fixed $(S_1, ..., S_k)$, selected vertex has expected degree

$$\min_{j=1,\dots,k} \left\{ \delta_{S_{< j}}^-(i^*,G) + \frac{k-j}{k} \left(\Delta - \delta_{S_{< j}}^-(i^*,G) \right) \right\}$$

▶ Sum over distribution of $\left(\delta_{S_i}^-(i^*,G)\right)_{j=1,\dots,k}$

The k-Partition Mechanism

```
randomly partition N into (S_1,\ldots,S_k), denote S_{< j} = \bigcup_{i < j} S_i i^* := \bot, d^* := 0 for j = 2,\ldots,k if \max_{i \in S_j} \delta_{S_{< j} \setminus \{i^*\}}^-(i,G) \ge d^* choose i \in \arg\max_{i' \in S_j} \delta_{S_{< j}}^-(i',G) uniformly at random i^* := i, d^* := \delta_{S_{< j}}^-(i,G) select i^*
```

- ▶ Parameterized lower bound $\alpha_k(\Delta)$
 - ▶ for every $k \ge 2$, non-decreasing in $\Delta = \Delta(G)$
 - $\alpha_k(1) = (k-1)/(2k)$
 - $\alpha_k(2) = 7/12 3/8k^{-1} 1/12k^{-2}$

The Permutation Mechanism

```
pick random permutation (\pi_1,\ldots,\pi_n) of N, denote \pi_{< j} = \bigcup_{i < j} \{\pi_i\} i^* := \bot, d^* := 0 for j = 2,\ldots,k if \delta_{\pi_{< j} \setminus \{i^*\}}^-(\pi_j) \geq d^* i^* := \pi_j, d^* := \delta_{\pi_{< j}}^-(\pi_j) return i^*
```

- ▶ Limit of *k*-partition mechanism as $k \to \infty$
- ► 1/2-optimal for approval, 7/12-optimal for plurality
- ► *k*-partition for fixed *k* may be more desirable, allows more anonymous processing of ballots

Upper Bound for Plurality

For any α -optimal impartial selection mechanism for plurality,

$$\alpha \le \begin{cases} 5/6 & \text{if } n = 3, \\ (6n-1)/8n & \text{if } n \ge 6 \text{ even, and} \\ 3/4 & \text{otherwise} \end{cases}$$

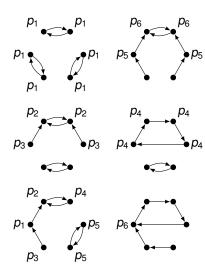
Upper Bound for Plurality

For any α -optimal impartial selection mechanism for plurality,

$$\alpha \le \begin{cases} 5/6 & \text{if } n = 3, \\ (6n-1)/8n & \text{if } n \ge 6 \text{ even, and} \\ 3/4 & \text{otherwise} \end{cases}$$

- Optimal mechanisms via linear optimization and graph isomorphism
- Number of constraints linear in number of graphs
- Upper bound for small graphs from dual, then generalize

Upper Bound for Plurality, $n \ge 6$ even



W.l.o.g., only consider symmetric mechanisms

$$np_1 = 1$$
 $2p_2 + 2p_3 \le 1$
 $p_1 + p_2 + p_3 + p_4 + (n-4)p_5 = 1$
 $2p_5 + 2p_6 \le 1$
 $4p_4 \le 1$
 $p_6 \le 1/2 - 1/(4n)$

 $\alpha \leq \frac{2p_6 + (1 - p_6)}{2} = \frac{p_6 + 1}{2}$

Thank you!