The Complexity of Computing the Solution Obtained by a Specific Algorithm

Paul W. Goldberg

Department of Computer Science University of Oxford, U.K.

LSE
 Oct 2013

Starting-point

It is PSPACE-complete to find any Nash equilibria of a game, that are computed by the Lemke-Howson algorithm. ${ }^{1}$
${ }^{1}$ (Papadimitriou, G, and Savani '11); "no short cuts" not every solution is a L-H solution; result also applies to some related game-solving algorithms

Starting-point

It is PSPACE-complete to find any Nash equilibria of a game, that are computed by the Lemke-Howson algorithm. ${ }^{1}$

So, we have taken a specific (exponential-time) algorithm \mathcal{A} for a specific problem (NASH), and found out the complexity of computing \mathcal{A} 's solutions...

[^0]
Starting-point

It is PSPACE-complete to find any Nash equilibria of a game, that are computed by the Lemke-Howson algorithm. ${ }^{1}$

So, we have taken a specific (exponential-time) algorithm \mathcal{A} for a specific problem (NASH), and found out the complexity of computing \mathcal{A} 's solutions... NASH is a funny choice of problem, it's believed to be hard but not known to be as hard as NP...

[^1]
Starting-point

It is PSPACE-complete to find any Nash equilibria of a game, that are computed by the Lemke-Howson algorithm. ${ }^{1}$

So, we have taken a specific (exponential-time) algorithm \mathcal{A} for a specific problem (NASH), and found out the complexity of computing \mathcal{A} 's solutions... NASH is a funny choice of problem, it's believed to be hard but not known to be as hard as NP... should we care about generalizations of the above result? (to other problems/exp-time algorithms)

[^2]
A more general class of questions

Given problem X and (exp-time) algorithm \mathcal{A} for X, what is the complexity of computing \mathcal{A} 's solutions?

A more general class of questions

Given problem X and (exp-time) algorithm \mathcal{A} for X, what is the complexity of computing \mathcal{A} 's solutions?

Example: $X=\mathrm{SAT}, \mathcal{A}=$ lexicographic search

A more general class of questions

Given problem X and (exp-time) algorithm \mathcal{A} for X, what is the complexity of computing \mathcal{A} 's solutions?

Example: $X=\mathrm{SAT}, \mathcal{A}=$ lexicographic search
LEXMINSAT (find the lexicographically min satisfying assignment) is complete for OptP (Krentel '88).

Definition

An OptP function f_{M} has associated poly-time non-det TM M; M outputs a binary number at each branch of computation; $f_{M}(x)$ is largest number for all accepting branches.

```
"easier" than PSPACE
```


Conjecture (attempt to generalize Slide 1)

Given any PPAD-complete problem X, and "path-following" algorithm \mathcal{A} for X, it's PSPACE-complete to compute \mathcal{A} 's output on instances of X.

- PPAD?
- "path-following"?

PPAD

parity argument on a directed graph (Papadimitriou '91):

END OF LINE

Given directed graph G of indegree/outdegree at most 1 , and a "source" vertex of indegree 0 , find another vertex of degree 1. G has vertices $\{0,1\}^{n}$ and edges represented by boolean circuits S, P.

END OF LINE characterizes PPAD; poly-time reductions between NASH and END OF LINE establish PPAD-completeness of NASH^{2}.
${ }^{2}$ Daskalakis, G, and Papadimitriou '05,'06; Chen, Deng, and Teng '06

END OF LINE graph

You are given a node with degree 1 (colored red here)

END OF LINE graph

The highlighted nodes are PPAD-complete to find.

How hard is PPAD?

- "between \mathbf{P} and NP"

How hard is PPAD?

- "between P and NP"
- NOT NP-complete unless NP=co-NP (Megiddo'86) since it's an NP total search problem (like FACTORING)

How hard is PPAD?

- "between \mathbf{P} and NP"
- NOT NP-complete unless NP=co-NP (Megiddo'86) since it's an NP total search problem (like FACTORING) (could there be some other way to prove PPAD is as hard as NP?)

How hard is PPAD?

- "between \mathbf{P} and NP"
- NOT NP-complete unless NP=co-NP (Megiddo'86) since it's an NP total search problem (like FACTORING) (could there be some other way to prove PPAD is as hard as NP?)
- anyway, it's assumed not solvable in poly-time, based on effort to find a poly-time algorithm, and usage of general boolean circuits in problem instances
- lexicographic search
- follow the line

Search for lexicographically-least solution is OptP-complete. The search for line-following solution is PSPACE-complete!

OTHER END OF THIS LINE (OEOTL) denotes the PSPACE-complete search problem.

END OF LINE graph

The node attached to the red node is PSPACE-complete to find!

- The circuits S and P that comprise an instance of END-OF-LINE are like a space-bounded time-reversible TM. (nodes of big graph \leftrightarrow configurations)
- It's PSPACE-complete to find the config of a space- n TM after 2^{n} transitions
- TMs can be made time-reversible ${ }^{3}$ (by remembering some of the previous configs, during a computation)

[^3]
The PSPACE-hardness of OEOTL

- The circuits S and P that comprise an instance of END-OF-LINE are like a space-bounded time-reversible TM. (nodes of big graph \leftrightarrow configurations)
- It's PSPACE-complete to find the config of a space- n TM after 2^{n} transitions
- TMs can be made time-reversible ${ }^{3}$ (by remembering some of the previous configs, during a computation)

Slide 1: Lemke-Howson serves as a proxy for generic polynomial-space bounded computation.

[^4]
Path-following algorithms

definition
 A path-following algorithm for a PPAD-complete problem X uses a reduction to convert X to END OF LINE, follows the line, and uses the same reduction to convert that end-of-line to a solution of X.

Lemke-Howson is path-following, so the result of slide 1 is a special case of the path-following algorithms conjecture.

Path-following algorithms

definition

A path-following algorithm for a PPAD-complete problem X uses a reduction to convert X to END OF LINE, follows the line, and uses the same reduction to convert that end-of-line to a solution of X.

Lemke-Howson is path-following, so the result of slide 1 is a special case of the path-following algorithms conjecture.

Challenge instances for the path-following algorithms conjecture

- $X=\mathrm{NASH}, \mathcal{A}=$ Scarf's algorithm
- $X=$ 2D-discrete Brouwer, $\mathcal{A}=$ "the natural algorithm"

PPAD is no harder than NP (maybe easier); Lemke-Howson is efficient in practice; but it's "harder" to compute the output of Lemke-Howson than the "obviously inefficient" lexicographic search

PPAD easier than NP?

General intuition for the hardness of PPAD is that unrestricted boolean circuits are hard to work with...
But note PPAD instances have polynomial "query complexity": consider a computationally unbounded algorithm that wants a solution given the circuits S and P and is able to query their input/output behaviour...

2D-DISCRETE BROUWER

Search for a panchromatic point of a discrete Brouwer function in 2D, a function $f: N \times N^{\prime} \longrightarrow\{0,1,2\}$ where

- the bottom row has color 1 (e.g. red)
- the left-hard side has color 2 (e.g. green)
- the top and RHS have color 0 (e.g. blue)
- internal points colored by a poly-size boolean circuit C

Assume N and N^{\prime} are exponentially large
C maps coordinates to colors

2D-DISCRETE BROUWER example

Search for trichromatic point

2D-DISCRETE BROUWER example

Search for trichromatic point... they are PPAD-complete to find (Chen and Deng ('06, '09))

The "natural" path-following algorithm

Follow the line! How hard is it to find this solution?

2D DISCRETE BROUWER

END OF LINE \leq_{p} 2D-BROUWER (Chen \& Deng '06, '09)
theorem
2D-discrete Brouwer is PSPACE-complete, if you want the "natural line-following" solution.

The 3D version is easier; 2D needed more work...

Goldberg
The Complexity of Computing the Solution Obtained by a Specif

Continue by checking
checked $\forall x_{n-3} \exists x_{n-2} \forall x_{n-1} \exists x_{n}$ done for $x_{n-3}=0$ (pres page) For $x_{n-3}=1$ we hare done it, since it works for $x_{n-2}=0$

If we reached "NO", ans should be NO. connect patajgets to $Y E S$-wire.

For $x_{n-3}=0$ we failed, but we have another attempt with $x_{n-3}=1$.
shift the successful result up 1.

Subformula corresp. to some vainbles fired

$\exists x_{i}$

At point (3) I nill exit at (4). This is because (1) corrrects to (2), \& ther ar no loose ends in the $x_{i} \leftarrow T$ circuit.

single-varable x_{i} (all othes

$\exists x . \phi(\ldots)$ (other vars fixed)

challenge instance (refined) for path-following conjecture

instances of 2D-discrete Brouwer generated by specific reductions from END OF LINE

challenge instance (refined) for path-following conjecture

instances of 2D-discrete Brouwer generated by specific reductions from END OF LINE

"theorem"

For 2D-discrete Brouwer instances generated by Chen-Deng reduction, it is \#P hard to compute the "natural line-following algorithm" solution.
but the above is just for one specific PPAD-complete class of instances - we have a long way to go...

[^0]: ${ }^{1}$ (Papadimitriou, G, and Savani '11); "no short cuts" not every solution is a L-H solution; result also applies to some related game-solving algorithms

[^1]: ${ }^{1}$ (Papadimitriou, G, and Savani '11); "no short cuts" not every solution is a L-H solution; result also applies to some related game-solving algorithms

[^2]: ${ }^{1}$ (Papadimitriou, G, and Savani '11); "no short cuts" not every solution is a L-H solution; result also applies to some related game-solving algorithms

[^3]: ${ }^{3}$ Bennett '73,'89; Crescenzi and Papadimitriou '95 (NTMs: depth-bounded tree-like circuit for NTM $\rightarrow(S, P)$-graph G; TRUE gates are reachable in $G)$

[^4]: ${ }^{3}$ Bennett '73,'89; Crescenzi and Papadimitriou '95 (NTMs: depth-bounded tree-like circuit for NTM $\rightarrow(S, P)$-graph G; TRUE gates are reachable in $G)$

