Learning Nash equilibria of games via payoff queries

John Fearnley¹ Paul Goldberg² Martin Gairing¹ Rahul Savani¹

¹Department of Computer Science University of Liverpool

²Department of Computer Science University of Oxford

The setting:

- You are told the format of the game
- You are not told the payoffs

Payoff Query:

- Query pure strategy profile
- Told payoffs of players

Payoff Query:

- Query pure strategy profile
- Told payoffs of players

Payoff Query:

- Query pure strategy profile
- Told payoffs of players

Challenge:

 Minimize number of payoff queries required to find an (approximate) Nash equilibrium

Algorithm:

- Makes a sequence of (adaptive) payoff queries
- Outputs an (exact/approximate) equilibrium

Algorithm:

- Makes a sequence of (adaptive) payoff queries
- Outputs an (exact/approximate) equilibrium
- May take exponential time

Motivation:

- Games of practical relevance might be very large
- Discovering the payoffs may be costly

Motivation:

- Games of practical relevance might be very large
- Discovering the payoffs may be costly
- Empirical game-theoretic analysis
 - Experimental research in AI pioneered by Mike Wellman

We study payoff query complexity in:

- 1 Bimatrix games
- 2 Congestion games on parallel links
- 3 Other results
 - Congestion games on DAGs
 - Graphical games

We study payoff query complexity in:

1 Bimatrix games

- 2 Congestion games on parallel links
- 3 Other results
 - Congestion games on DAGs
 - Graphical games

1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	1	-1	-1	-1
-1	-1	-1	1	-1	-1
-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	1

Zero-sum hide and seek game

1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	1	-1	-1	-1
-1	-1	-1	1	-1	-1
-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	1

- Zero-sum hide and seek game
- Unique uniform completely mixed Nash equilibrium

1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	1	-1	-1	-1
-1	-1	-1	1	-1	-1
-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	1

- Zero-sum hide and seek game
- Unique uniform completely mixed Nash equilibrium
- Tweaking any payoff changes the equilibrium strategies

1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	1	-1	-1	-1
-1	-1	-1	1	-1	-1
-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	1

Observation

The payoff query complexity of finding an exact equilibrium of a $\mathbf{k} \times \mathbf{k}$ bimatrix game is \mathbf{k}^2 , even for zero-sum games.

Approximate equilibria

Nash equilibrium:

Players cannot gain by unilateral deviation

■ *c*-Nash equilibrium:

Players gain at most ϵ by unilateral deviation

Approximate equilibria

Nash equilibrium:

Players cannot gain by unilateral deviation

■ *c*-Nash equilibrium:

Players gain at most ϵ by unilateral deviation

Assume all payoffs in range [0, 1]

- For $\epsilon = 0$, query complexity is k^2
- We consider three intervals for $\epsilon > 0$:

- For $\epsilon = 0$, query complexity is k^2
- We consider three intervals for $\epsilon > 0$:

- For $\epsilon \ge 1 \frac{1}{k}$, we don't need any queries:
- Both players can play uniformly on their *k* strategies.
 - **\frac{1}{k}** probability on a best response

For $\epsilon = \frac{1}{2}$:

■ The query complexity is at most 2k - 1

■ The query complexity is at least k - 2

For $\epsilon = \frac{1}{2}$:

- The query complexity is at most 2k 1
 - Simulate simple algorithm of Daskalakis, Mehta and Papadimitriou to obtain a ¹/₂-Nash equilibrium

■ The query complexity is at least k - 2

0	0	1	1	0	-1

0	0	1	1	0	-1
					0
					0
					1
					0
					0

0	0	1	1	0	-1
					0
					0
					1
					0
					0

Hide an all 1 row

Hide an all 1 row

■ If you make *k* - 3 queries, there will be three unknown rows

Hide an all 1 row

- If you make *k* 3 queries, there will be three unknown rows
- One of these rows will have probability < 0.5</p>

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
1	1	1	1	1	1
0	0	0	0	0	0

Hide an all 1 row

- If you make *k* − 3 queries, there will be three unknown rows
- One of these rows will have probability < 0.5</p>
- We can make the row player payoff < 0.5

1	1	0	0
0	1	1	0
0	0	1	1
1	0	1	0
0	1	0	1
1	0	0	1

- For each even ℓ consider an $\binom{\ell}{\ell/2} \times \ell$ game
 - Each row has exactly ℓ/2 1s
 - Every row is distinct

1	1	0	0
0	1	1	0
0	0	1	1
1	0	1	0
0	1	0	1
1	0	0	1

The value of the game is 0.5

1	1	0	0
0	1	1	0
0	0	1	1
1	0	1	0
0	1	0	1
1	0	0	1

- The value of the game is 0.5
 - Column player plays uniformly ⇒ all rows have payoff 0.5

1	1	0	0
0	1	1	0
0	0	1	1
1	0	1	0
0	1	0	1
1	0	0	1

- The value of the game is 0.5
 - Column player plays uniformly ⇒ all rows have payoff 0.5
 - Row player plays uniformly ⇒ all columns have payoff 0.5

Game has value $\frac{1}{2}$

Game has value $\frac{1}{2}$

Column player must spread probability mass fairly evenly

- Game has value $\frac{1}{2}$
- Column player must spread probability mass fairly evenly
- Row player's payoff can't be too high (> $\frac{1}{2} + \epsilon$)

$\Omega(k \log k)$ lower bound for $\epsilon = O(\frac{1}{\log k})$

- Game has value $\frac{1}{2}$
- Column player must spread probability mass fairly evenly
- Row player's payoff can't be too high (> $\frac{1}{2} + \epsilon$)
- Suppose a query algorithm makes few queries:
 - ∃ row *r* played with low probability that received few queries
 - Probability on queried cells of r is low

$\Omega(k \log k)$ lower bound for $\epsilon = O(\frac{1}{\log k})$

- Game has value $\frac{1}{2}$
- Column player must spread probability mass fairly evenly
- Row player's payoff can't be too high (> $\frac{1}{2} + \epsilon$)
- Suppose a query algorithm makes few queries:
 - I row r played with low probability that received few queries
 - Probability on queried cells of *r* is low
- Replace all un-queried cells of r with 1's

$\Omega(k \log k)$ lower bound for $\epsilon = O(\frac{1}{\log k})$

- Game has value ¹/₂
- Column player must spread probability mass fairly evenly
- Row player's payoff can't be too high (> $\frac{1}{2} + \epsilon$)
- Suppose a query algorithm makes few queries:
 - ∃ row *r* played with low probability that received few queries
 - Probability on queried cells of *r* is low
- Replace all un-queried cells of r with 1's
- Contradiction: regret of row player too high

Bimatrix games summary: *e*-Nash

Bimatrix games summary: *c*-Nash

- Randomized algorithm which works with high probability
- Adapt method of Bosse, Byrka, and Markakis
- Approximately solve zero-sum game via multiplicative weights update

Well-supported approximate equilibria

Nash equilibrium:

Players cannot gain by unilateral deviation only pure best responses can have probability > **0**

■ *c*-Nash equilibrium:

Players gain at most ϵ by unilateral deviation

• ϵ -well-supported Nash equilibrium (ϵ -WSNE):

only ϵ pure best responses can have probability > 0

Bimatrix games: *c***-WSNE**

For the upper bound we adapt an algorithm of Kontogiannis and Spirakis

Outline

We study query complexity in:

- Bimatrix games
- 2 Congestion games on parallel links
- 3 Other results
 - Congestion games on DAGs
 - Graphical games

We study query complexity in:

- 1 Bimatrix games
- 2 Congestion games on parallel links
- 3 Other results
 - Congestion games on DAGs
 - Graphical games

Parallel links

We have

A number of links *m*; a number of players *n*

Parallel links

We have

- A number of links *m*; a number of players *n*
- Latency functions

Parallel links

We have

- A number of links *m*; a number of players *n*
- Latency functions

What is the query complexity of finding a pure equilibrium?

Parallel links

We have

- A number of links *m*; a number of players *n*
- Latency functions
- What is the query complexity of finding a pure equilibrium?
- Query: assign at most *n* players on each link
- Doesn't have to sum to *n*; e.g. (*n*, *n*, *n*, ..., *n*) is a valid query!

Equilibrium with two links

Equilibrium with two links

Equilibrium with two links

Parallel links: results

Lower bound: $O(\log n)$

Upper bound:
$$O(\log(n) \cdot \frac{\log^2(m)}{\log\log(m)})$$

Parallel links: results

- Lower bound: O(log n) construction with two links
- Upper bound: $O(\log(n) \cdot \frac{\log^2(m)}{\log \log(m)})$

Parallel links: results

Lower bound: O(log n)
Upper bound: O(log(n) · log²(m)/log log(m))

Start with all players in one block on cheapest link

Start with all players in one block on cheapest link

Each step: halve blocks & compute a new equilibrium

Start with all players in one block on cheapest link

- Each step: halve blocks & compute a new equilibrium
- Perform each step using O(log²(m)) queries

Observation: each link can receive at most one block

Observation: each link can receive at most one block

 $\blacksquare \Longrightarrow$ at most *m* blocks can be moved

One query: Add one block to each link to get costs

One query: Add one block to each link to get costs

How many blocks move? Guess

One query: Add one block to each link to get costs

- How many blocks move? Guess
- Guess + costs gives a single target cost for all links

One query: Add one block to each link to get costs

- How many blocks move? Guess
- Guess + costs gives a single target cost for all links
- Is the guess correct? Parallel binary search

Nested binary search

- Outer: guess how many move q (determines target cost)
- Inner: find how many want to move **q**' (given target cost)
- Done if q = q', o/w compare q and q' to drive outer search

Nested binary search

- Outer: guess how many move q (determines target cost)
- Inner: find how many want to move **q**' (given target cost)
- Done if q = q', o/w compare q and q' to drive outer search
- log²(m) queries

• Overall query complexity: $O(\log(n) \cdot \log^2(m))$

Overall query complexity: O(log(n) · log²(m))
Slight improvement: split each block into log(m) blocks
O(log(n) · log²(m) / log log(m))

Other results

Finding a pure Nash equilibrium in a symmetric network congestion game on a **directed acyclic graph**

• $O(\mathbf{n} \cdot |\mathbf{E}|)$ payoff queries

Other results

Finding a pure Nash equilibrium in a symmetric network congestion game on a **directed acyclic graph**

• $O(n \cdot |E|)$ payoff queries

Graphical games

For constant *d*, the payoff query complexity of degree *d* graphical games is polynomial

Open questions

Non-randomized algorithms for:

- ϵ -Nash for ϵ < 0.5
- ϵ -WSNE for ϵ < 1
- Better lower bounds for congestion games
- Congestion games on general graphs
- Other types of game
 - Three-or-more-player strategic form games
 - Asymmetric network congestion games

Related work

Sergiu Hart and Noam Nisan (2013)

The Query Complexity of Correlated Equilibria

International Symposium on Algorithmic Game Theory (SAGT)

Yakov Babichenko (2013) Query Complexity of Approximate Nash Equilibria

http://arxiv.org/abs/1306.6686

Paul Goldberg and Aaron Roth (2013) Bounds for the Query Complexity of Approximate Equilibria

http://eccc.hpi-web.de/report/2013/136/

Thank you

John Fearnley, Martin Gairing, Paul Goldberg, Rahul Savani (2013) Learning Equilibria of Games via Payoff Queries

ACM Conference on Electronic Commerce (EC)

http://arxiv.org/abs/1302.3116

John Fearnley and Rahul Savani (2013)

Finding Approximate Nash Equilibria of Bimatrix Games via Payoff Queries

Manuscript