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The setting:
You are told the format of the game
You are not told the payoffs
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Challenge:
Minimize number of payoff queries required to find an
(approximate) Nash equilibrium
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Observation

The payoff query complexity of finding an exact equilibrium of a
k × k bimatrix game is k 2, even for zero-sum games.
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Players gain at most ε by unilateral deviation

Assume all payoffs in range [0, 1]
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k , we don’t need any queries:

Both players can play uniformly on their k strategies.
1
k probability on a best response
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One of these rows will have probability < 0.5
We can make the row player payoff < 0.5
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Every row is distinct
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Game has value 1
2

Column player must spread probability mass fairly evenly

Row player’s payoff can’t be too high (> 1
2 + ε)

Suppose a query algorithm makes few queries:

∃ row r played with low probability that received few queries

Probability on queried cells of r is low

Replace all un-queried cells of r with 1’s

Contradiction: regret of row player too high
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Bimatrix games summary: ε-Nash

Queries

Quality of approximation

0

k2

O( 1
log k )

Ω(k log k)

0.382 + ε

O(
k log k

ε2
)

whp

1
2

[k − 2,
2k − 1]

1 − 1
k

0

1

Randomized algorithm which works with high probability
Adapt method of Bosse, Byrka, and Markakis
Approximately solve zero-sum game via multiplicative
weights update



Well-supported approximate equilibria

Nash equilibrium:

Players cannot gain by unilateral deviation

only pure best responses can have probability > 0

ε-Nash equilibrium:

Players gain at most ε by unilateral deviation

ε-well-supported Nash equilibrium (ε-WSNE):

only ε pure best responses can have probability > 0



Bimatrix games: ε-WSNE
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ε < 1
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For the upper bound we adapt an algorithm of
Kontogiannis and Spirakis



Outline

We study query complexity in:

1 Bimatrix games

2 Congestion games on parallel links

3 Other results

Congestion games on DAGs

Graphical games



Outline

We study query complexity in:

1 Bimatrix games

2 Congestion games on parallel links

3 Other results

Congestion games on DAGs

Graphical games



Part 2: Congestion games

Parallel links
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We have
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Latency functions
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Query: assign at most n players on each link

Doesn’t have to sum to n; e.g. (n, n, n, . . . , n) is a valid query!
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Open questions

Non-randomized algorithms for:

ε-Nash for ε < 0.5
ε-WSNE for ε < 1

Better lower bounds for congestion games

Congestion games on general graphs

Other types of game

Three-or-more-player strategic form games

Asymmetric network congestion games
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