
Learning Nash equilibria of games
via payoff queries

John Fearnley1 Paul Goldberg2 Martin Gairing1 Rahul Savani1

1Department of Computer Science
University of Liverpool

2Department of Computer Science
University of Oxford

Query Complexity

1 2 2 2 2 2

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

The setting:
You are told the format of the game
You are not told the payoffs

Query Complexity

1 2 2 2 2 2

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Payoff Query:
Query pure strategy profile
Told payoffs of players

Query Complexity

1 2 2 2 2 2

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Payoff Query:
Query pure strategy profile
Told payoffs of players

Query Complexity

1 2 2 2 2 2

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Payoff Query:
Query pure strategy profile
Told payoffs of players

Query Complexity

1 2 2 2 2 2

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Challenge:
Minimize number of payoff queries required to find an
(approximate) Nash equilibrium

Query Complexity

1 2 2 2 2 2

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Algorithm:
Makes a sequence of (adaptive) payoff queries
Outputs an (exact/approximate) equilibrium

May take exponential time

Query Complexity

1 2 2 2 2 2

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Algorithm:
Makes a sequence of (adaptive) payoff queries
Outputs an (exact/approximate) equilibrium
May take exponential time

Query Complexity

1 2 2 2 2 2

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Motivation:
Games of practical relevance might be very large
Discovering the payoffs may be costly

Empirical game-theoretic analysis
Experimental research in AI pioneered by Mike Wellman

Query Complexity

1 2 2 2 2 2

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Motivation:
Games of practical relevance might be very large
Discovering the payoffs may be costly
Empirical game-theoretic analysis

Experimental research in AI pioneered by Mike Wellman

Outline

We study payoff query complexity in:

1 Bimatrix games

2 Congestion games on parallel links

3 Other results

Congestion games on DAGs

Graphical games

Outline

We study payoff query complexity in:

1 Bimatrix games

2 Congestion games on parallel links

3 Other results

Congestion games on DAGs

Graphical games

Exact equilibria: bad news

1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Zero-sum hide and seek game

Unique uniform completely mixed Nash equilibrium
Tweaking any payoff changes the equilibrium strategies

Exact equilibria: bad news

1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Zero-sum hide and seek game
Unique uniform completely mixed Nash equilibrium

Tweaking any payoff changes the equilibrium strategies

Exact equilibria: bad news

1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Zero-sum hide and seek game
Unique uniform completely mixed Nash equilibrium
Tweaking any payoff changes the equilibrium strategies

Exact equilibria: bad news

1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Observation

The payoff query complexity of finding an exact equilibrium of a
k × k bimatrix game is k 2, even for zero-sum games.

Approximate equilibria

Nash equilibrium:

Players cannot gain by unilateral deviation

ε-Nash equilibrium:

Players gain at most ε by unilateral deviation

Assume all payoffs in range [0, 1]

Approximate equilibria

Nash equilibrium:

Players cannot gain by unilateral deviation

ε-Nash equilibrium:

Players gain at most ε by unilateral deviation

Assume all payoffs in range [0, 1]

Approximate Nash equilibria

For ε = 0, query complexity is k 2

We consider three intervals for ε > 0:

0 1
2 1 − 1

k
1

For ε ≥ 1 − 1
k , we don’t need any queries:

Both players can play uniformly on their k strategies.
1
k probability on a best response

Approximate Nash equilibria

For ε = 0, query complexity is k 2

We consider three intervals for ε > 0:

0 1
2 1 − 1

k
1

For ε ≥ 1 − 1
k , we don’t need any queries:

Both players can play uniformly on their k strategies.
1
k probability on a best response

Approximate Nash equilibria

For ε = 1
2 :

The query complexity is at most 2k − 1

Simulate simple algorithm of Daskalakis, Mehta and
Papadimitriou to obtain a 1

2 -Nash equilibrium

The query complexity is at least k − 2

Approximate Nash equilibria

For ε = 1
2 :

The query complexity is at most 2k − 1
Simulate simple algorithm of Daskalakis, Mehta and
Papadimitriou to obtain a 1

2 -Nash equilibrium

The query complexity is at least k − 2

DMP algorithm with 2k − 1 queries

0 0 1 1 0 -1

-1 1 -1 -1 -1 0

-1 -1 1 -1 -1 0

-1 -1 0 1 -1 1

-1 -1 1 -1 1 0

-1 -1 1 -1 -1 0

DMP algorithm with 2k − 1 queries

0 0 1 1 0 -1

-1 1 -1 -1 -1 0

-1 -1 1 -1 -1 0

-1 -1 0 1 -1 1

-1 -1 1 -1 1 0

-1 -1 1 -1 -1 0

DMP algorithm with 2k − 1 queries

0 0 1 1 0 -1

-1 1 -1 -1 -1 0

-1 -1 1 -1 -1 0

-1 -1 0 1 -1 1

-1 -1 1 -1 1 0

-1 -1 1 -1 -1 0

DMP algorithm with 2k − 1 queries

0 0 1 1 0 -1

-1 1 -1 -1 -1 0

-1 -1 1 -1 -1 0

-1 -1 0 1 -1 1

-1 -1 1 -1 1 0

-1 -1 1 -1 -1 0

Lower bound of k − 2 for ε = 1
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Hide an all 1 row

If you make k − 3 queries, there will be three unknown rows
One of these rows will have probability < 0.5
We can make the row player payoff < 0.5

Lower bound of k − 2 for ε = 1
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Hide an all 1 row

If you make k − 3 queries, there will be three unknown rows
One of these rows will have probability < 0.5
We can make the row player payoff < 0.5

Lower bound of k − 2 for ε = 1
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Hide an all 1 row
If you make k − 3 queries, there will be three unknown rows

One of these rows will have probability < 0.5
We can make the row player payoff < 0.5

Lower bound of k − 2 for ε = 1
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Hide an all 1 row
If you make k − 3 queries, there will be three unknown rows
One of these rows will have probability < 0.5

We can make the row player payoff < 0.5

Lower bound of k − 2 for ε = 1
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Hide an all 1 row
If you make k − 3 queries, there will be three unknown rows
One of these rows will have probability < 0.5
We can make the row player payoff < 0.5

Ω(k log k) lower bound for ε = O(1
log k)

1 1 0 0

0 1 1 0

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 1

For each even ` consider an
(`
`/2
)
× ` game

Each row has exactly `/2 1s
Every row is distinct

Ω(k log k) lower bound for ε = O(1
log k)

1 1 0 0

0 1 1 0

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 1

The value of the game is 0.5

Column player plays uniformly⇒ all rows have payoff 0.5
Row player plays uniformly⇒ all columns have payoff 0.5

Ω(k log k) lower bound for ε = O(1
log k)

1 1 0 0

0 1 1 0

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 1

The value of the game is 0.5
Column player plays uniformly⇒ all rows have payoff 0.5

Row player plays uniformly⇒ all columns have payoff 0.5

Ω(k log k) lower bound for ε = O(1
log k)

1 1 0 0

0 1 1 0

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 1

The value of the game is 0.5
Column player plays uniformly⇒ all rows have payoff 0.5
Row player plays uniformly⇒ all columns have payoff 0.5

Ω(k log k) lower bound for ε = O(1
log k)

Game has value 1
2

Column player must spread probability mass fairly evenly

Row player’s payoff can’t be too high (> 1
2 + ε)

Suppose a query algorithm makes few queries:

∃ row r played with low probability that received few queries

Probability on queried cells of r is low

Replace all un-queried cells of r with 1’s

Contradiction: regret of row player too high

Ω(k log k) lower bound for ε = O(1
log k)

Game has value 1
2

Column player must spread probability mass fairly evenly

Row player’s payoff can’t be too high (> 1
2 + ε)

Suppose a query algorithm makes few queries:

∃ row r played with low probability that received few queries

Probability on queried cells of r is low

Replace all un-queried cells of r with 1’s

Contradiction: regret of row player too high

Ω(k log k) lower bound for ε = O(1
log k)

Game has value 1
2

Column player must spread probability mass fairly evenly

Row player’s payoff can’t be too high (> 1
2 + ε)

Suppose a query algorithm makes few queries:

∃ row r played with low probability that received few queries

Probability on queried cells of r is low

Replace all un-queried cells of r with 1’s

Contradiction: regret of row player too high

Ω(k log k) lower bound for ε = O(1
log k)

Game has value 1
2

Column player must spread probability mass fairly evenly

Row player’s payoff can’t be too high (> 1
2 + ε)

Suppose a query algorithm makes few queries:

∃ row r played with low probability that received few queries

Probability on queried cells of r is low

Replace all un-queried cells of r with 1’s

Contradiction: regret of row player too high

Ω(k log k) lower bound for ε = O(1
log k)

Game has value 1
2

Column player must spread probability mass fairly evenly

Row player’s payoff can’t be too high (> 1
2 + ε)

Suppose a query algorithm makes few queries:

∃ row r played with low probability that received few queries

Probability on queried cells of r is low

Replace all un-queried cells of r with 1’s

Contradiction: regret of row player too high

Ω(k log k) lower bound for ε = O(1
log k)

Game has value 1
2

Column player must spread probability mass fairly evenly

Row player’s payoff can’t be too high (> 1
2 + ε)

Suppose a query algorithm makes few queries:

∃ row r played with low probability that received few queries

Probability on queried cells of r is low

Replace all un-queried cells of r with 1’s

Contradiction: regret of row player too high

Bimatrix games summary: ε-Nash

Queries

Quality of approximation

0

k2

O(1
log k)

Ω(k log k)

1
2

[k − 2,
2k − 1]

1 − 1
k

0

1

Bimatrix games summary: ε-Nash

Queries

Quality of approximation

0

k2

O(1
log k)

Ω(k log k)

0.382 + ε

O(
k log k

ε2
)

whp

1
2

[k − 2,
2k − 1]

1 − 1
k

0

1

Randomized algorithm which works with high probability
Adapt method of Bosse, Byrka, and Markakis
Approximately solve zero-sum game via multiplicative
weights update

Well-supported approximate equilibria

Nash equilibrium:

Players cannot gain by unilateral deviation

only pure best responses can have probability > 0

ε-Nash equilibrium:

Players gain at most ε by unilateral deviation

ε-well-supported Nash equilibrium (ε-WSNE):

only ε pure best responses can have probability > 0

Bimatrix games: ε-WSNE

0 1
k

Θ(k 2)

2
3 + ε

O(
k log k
ε4)

whp

ε < 1

Ω(k)

For the upper bound we adapt an algorithm of
Kontogiannis and Spirakis

Outline

We study query complexity in:

1 Bimatrix games

2 Congestion games on parallel links

3 Other results

Congestion games on DAGs

Graphical games

Outline

We study query complexity in:

1 Bimatrix games

2 Congestion games on parallel links

3 Other results

Congestion games on DAGs

Graphical games

Part 2: Congestion games

Parallel links

s t
...
...

We have

A number of links m; a number of players n

Latency functions

What is the query complexity of finding a pure equilibrium?

Query: assign at most n players on each link

Doesn’t have to sum to n; e.g. (n, n, n, . . . , n) is a valid query!

Part 2: Congestion games

Parallel links

s t
...
...

We have

A number of links m; a number of players n

Latency functions

What is the query complexity of finding a pure equilibrium?

Query: assign at most n players on each link

Doesn’t have to sum to n; e.g. (n, n, n, . . . , n) is a valid query!

Part 2: Congestion games

Parallel links

s t
...
...

We have

A number of links m; a number of players n

Latency functions

What is the query complexity of finding a pure equilibrium?

Query: assign at most n players on each link

Doesn’t have to sum to n; e.g. (n, n, n, . . . , n) is a valid query!

Part 2: Congestion games

Parallel links

s t
...
...

We have

A number of links m; a number of players n

Latency functions

What is the query complexity of finding a pure equilibrium?

Query: assign at most n players on each link

Doesn’t have to sum to n; e.g. (n, n, n, . . . , n) is a valid query!

Equilibrium with two links

0 2 4 6 8 10
0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

players on red link

la
te

nc
y

Equilibrium with two links

0 2 4 6 8 10
0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

players on red link

la
te

nc
y

Equilibrium with two links

0 2 4 6 8 10
0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

equilibrium

players on red link

la
te

nc
y

Parallel links: results

Lower bound: O(log n)

Upper bound: O(log(n) ·
log2(m)

log log(m)
)

Parallel links: results

Lower bound: O(log n) - construction with two links

Upper bound: O(log(n) ·
log2(m)

log log(m)
)

O(log n) lower bound (two links)

0 2 4 6 8 10
0

0.5

1

1.5

2

1 3 5 7 9

` u

players on red link

la
te

nc
y

O(log n) lower bound (two links)

0 2 4 6 8 10
0

0.5

1

1.5

2

1 3 5 7 9

` u`+u
2

players on red link

la
te

nc
y

O(log n) lower bound (two links)

0 2 4 6 8 10
0

0.5

1

1.5

2

1 3 5 7 9

` u`+u
2query 1

players on red link

la
te

nc
y

O(log n) lower bound (two links)

0 2 4 6 8 10
0

0.5

1

1.5

2

1 3 5 7 9

` u

players on red link

la
te

nc
y

O(log n) lower bound (two links)

0 2 4 6 8 10
0

0.5

1

1.5

2

1 3 5 7 9

` u`+u
2

players on red link

la
te

nc
y

O(log n) lower bound (two links)

0 2 4 6 8 10
0

0.5

1

1.5

2

1 3 5 7 9

` u`+u
2query 2

players on red link

la
te

nc
y

O(log n) lower bound (two links)

0 2 4 6 8 10
0

0.5

1

1.5

2

1 3 5 7 9

` u

players on red link

la
te

nc
y

O(log n) lower bound (two links)

0 2 4 6 8 10
0

0.5

1

1.5

2

1 3 5 7 9

` u

players on red link

la
te

nc
y

Parallel links: results

Lower bound: O(log n)

Upper bound: O(log(n) ·
log2(m)

log log(m)
)

Algorithm

1 2 3 4 5
0

20

40

60

80

link

la
te

nc
y

64 players

Start with all players in one block on cheapest link

Each step: halve blocks & compute a new equilibrium
Perform each step using O(log2(m)) queries

Algorithm

1 2 3 4 5
0

20

40

60

80

link

la
te

nc
y

64 players
32 players

Start with all players in one block on cheapest link
Each step: halve blocks & compute a new equilibrium

Perform each step using O(log2(m)) queries

Algorithm

1 2 3 4 5
0

20

40

60

80

link

la
te

nc
y

64 players
32 players

Start with all players in one block on cheapest link
Each step: halve blocks & compute a new equilibrium
Perform each step using O(log2(m)) queries

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

Observation: each link can receive at most one block
=⇒ at most m blocks can be moved

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

Observation: each link can receive at most one block
=⇒ at most m blocks can be moved

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

Observation: each link can receive at most one block

=⇒ at most m blocks can be moved

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

Observation: each link can receive at most one block
=⇒ at most m blocks can be moved

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

One query: Add one block to each link to get costs

How many blocks move? Guess
Guess + costs gives a single target cost for all links
Is the guess correct? Parallel binary search

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

One query: Add one block to each link to get costs
How many blocks move? Guess

Guess + costs gives a single target cost for all links
Is the guess correct? Parallel binary search

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

One query: Add one block to each link to get costs
How many blocks move? Guess
Guess + costs gives a single target cost for all links

Is the guess correct? Parallel binary search

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

One query: Add one block to each link to get costs
How many blocks move? Guess
Guess + costs gives a single target cost for all links
Is the guess correct? Parallel binary search

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

Nested binary search
Outer: guess how many move q (determines target cost)
Inner: find how many want to move q′ (given target cost)
Done if q = q′, o/w compare q and q′ to drive outer search

log2(m) queries

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

Nested binary search
Outer: guess how many move q (determines target cost)
Inner: find how many want to move q′ (given target cost)
Done if q = q′, o/w compare q and q′ to drive outer search

log2(m) queries

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

Overall query complexity: O(log(n) · log2(m))

Slight improvement: split each block into log(m) blocks

O(log(n) · log2(m)/ log log(m))

Algorithm

1 2 3 4 5
0

20

40

60

link

la
te

nc
y

Overall query complexity: O(log(n) · log2(m))

Slight improvement: split each block into log(m) blocks

O(log(n) · log2(m)/ log log(m))

Other results

Finding a pure Nash equilibrium in a symmetric network
congestion game on a directed acyclic graph
O(n · |E|) payoff queries

Graphical games
For constant d, the payoff query complexity of degree d
graphical games is polynomial

Other results

Finding a pure Nash equilibrium in a symmetric network
congestion game on a directed acyclic graph
O(n · |E|) payoff queries

Graphical games
For constant d, the payoff query complexity of degree d
graphical games is polynomial

Open questions

Non-randomized algorithms for:

ε-Nash for ε < 0.5
ε-WSNE for ε < 1

Better lower bounds for congestion games

Congestion games on general graphs

Other types of game

Three-or-more-player strategic form games

Asymmetric network congestion games

Related work

Sergiu Hart and Noam Nisan (2013)
The Query Complexity of Correlated Equilibria
International Symposium on Algorithmic Game Theory (SAGT)

Yakov Babichenko (2013)
Query Complexity of Approximate Nash Equilibria
http://arxiv.org/abs/1306.6686

Paul Goldberg and Aaron Roth (2013)
Bounds for the Query Complexity of Approximate Equilibria

http://eccc.hpi-web.de/report/2013/136/

http://arxiv.org/abs/1306.6686
http://eccc.hpi-web.de/report/2013/136/

Thank you

John Fearnley, Martin Gairing, Paul Goldberg, Rahul Savani (2013)
Learning Equilibria of Games via Payoff Queries
ACM Conference on Electronic Commerce (EC)

http://arxiv.org/abs/1302.3116

John Fearnley and Rahul Savani (2013)
Finding Approximate Nash Equilibria of Bimatrix Games via
Payoff Queries
Manuscript

http://arxiv.org/abs/1302.3116

