Learning Nash equilibria of games via payoff queries

John Fearnley ${ }^{1}$ Paul Goldberg ${ }^{2}$ Martin Gairing ${ }^{1}$ Rahul Savani ${ }^{1}$

${ }^{1}$ Department of Computer Science
University of Liverpool
${ }^{2}$ Department of Computer Science
University of Oxford

Query Complexity

The setting:

■ You are told the format of the game

- You are not told the payoffs

Query Complexity

Payoff Query:

■ Query pure strategy profile

- Told payoffs of players

Query Complexity

Payoff Query:

■ Query pure strategy profile

- Told payoffs of players

Query Complexity

Payoff Query:

■ Query pure strategy profile

- Told payoffs of players

Query Complexity

Challenge:
■ Minimize number of payoff queries required to find an (approximate) Nash equilibrium

Query Complexity

Algorithm:

■ Makes a sequence of (adaptive) payoff queries

- Outputs an (exact/approximate) equilibrium

Query Complexity

Algorithm:

■ Makes a sequence of (adaptive) payoff queries

- Outputs an (exact/approximate) equilibrium
- May take exponential time

Query Complexity

Motivation:

■ Games of practical relevance might be very large
■ Discovering the payoffs may be costly

Query Complexity

Motivation:

■ Games of practical relevance might be very large

- Discovering the payoffs may be costly

■ Empirical game-theoretic analysis
■ Experimental research in AI pioneered by Mike Wellman

Outline

We study payoff query complexity in:

1 Bimatrix games
2 Congestion games on parallel links
3 Other results

- Congestion games on DAGs
- Graphical games

Outline

We study payoff query complexity in:

1 Bimatrix games
2 Congestion games on parallel links
3 Other results

- Congestion games on DAGs
- Graphical games

Exact equilibria: bad news

1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	1	-1	-1	-1
-1	-1	-1	1	-1	-1
-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	1

■ Zero-sum hide and seek game

Exact equilibria: bad news

1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	1	-1	-1	-1
-1	-1	-1	1	-1	-1
-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	1

■ Zero-sum hide and seek game
■ Unique uniform completely mixed Nash equilibrium

Exact equilibria: bad news

1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	1	-1	-1	-1
-1	-1	-1	1	-1	-1
-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	1

■ Zero-sum hide and seek game

- Unique uniform completely mixed Nash equilibrium

■ Tweaking any payoff changes the equilibrium strategies

Exact equilibria: bad news

1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	1	-1	-1	-1
-1	-1	-1	1	-1	-1
-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	1

Observation

The payoff query complexity of finding an exact equilibrium of a $\boldsymbol{k} \times \boldsymbol{k}$ bimatrix game is $\boldsymbol{k}^{\mathbf{2}}$, even for zero-sum games.

Approximate equilibria

■ Nash equilibrium:
Players cannot gain by unilateral deviation
■ ϵ-Nash equilibrium:
Players gain at most ϵ by unilateral deviation

Approximate equilibria

■ Nash equilibrium:
Players cannot gain by unilateral deviation
■ ϵ-Nash equilibrium:
Players gain at most ϵ by unilateral deviation

■ Assume all payoffs in range [0,1]

Approximate Nash equilibria

- For $\boldsymbol{\epsilon}=\mathbf{0}$, query complexity is $\boldsymbol{k}^{\mathbf{2}}$
- We consider three intervals for $\epsilon>\mathbf{0}$:

Approximate Nash equilibria

■ For $\boldsymbol{\epsilon}=\mathbf{0}$, query complexity is $\boldsymbol{k}^{\mathbf{2}}$
■ We consider three intervals for $\boldsymbol{\epsilon}>\mathbf{0}$:

\square For $\epsilon \geq 1-\frac{1}{k}$, we don't need any queries:
$■$ Both players can play uniformly on their \boldsymbol{k} strategies.
$\square \frac{1}{k}$ probability on a best response

Approximate Nash equilibria

For $\epsilon=\frac{1}{2}$:
■ The query complexity is at most $\mathbf{2 k} \mathbf{- 1}$

■ The query complexity is at least \boldsymbol{k} - 2

Approximate Nash equilibria

For $\epsilon=\frac{1}{2}$:
■ The query complexity is at most $\mathbf{2 k} \mathbf{- 1}$
■ Simulate simple algorithm of Daskalakis, Mehta and Papadimitriou to obtain a $\frac{1}{2}$-Nash equilibrium
■ The query complexity is at least $\boldsymbol{k} \mathbf{- 2}$

DMP algorithm with $2 k-1$ queries

DMP algorithm with $2 k-1$ queries

DMP algorithm with $2 k-1$ queries

0	0	1	1	0	-1
					0
					0
					1
					0
					0

DMP algorithm with $2 k-1$ queries

0	0	1	1	0	-1
					0
					0
					1
					0
					0

Lower bound of $k-2$ for $\epsilon=\frac{1}{2}$

Lower bound of $k-2$ for $\epsilon=\frac{1}{2}$

■ Hide an all 1 row

Lower bound of $k-2$ for $\epsilon=\frac{1}{2}$

■ Hide an all 1 row

- If you make $\boldsymbol{k}-\mathbf{3}$ queries, there will be three unknown rows

Lower bound of $k-2$ for $\epsilon=\frac{1}{2}$

■ Hide an all 1 row

- If you make $\boldsymbol{k}-\mathbf{3}$ queries, there will be three unknown rows

■ One of these rows will have probability <0.5

Lower bound of $k-2$ for $\epsilon=\frac{1}{2}$

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
1	1	1	1	1	1
0	0	0	0	0	0

■ Hide an all 1 row

- If you make $\boldsymbol{k}-\mathbf{3}$ queries, there will be three unknown rows
\square One of these rows will have probability < 0.5
- We can make the row player payoff < 0.5

$\Omega(k \log k)$ lower bound for $\varepsilon=O\left(\frac{1}{\log k}\right)$

1	1	0	0
0	1	1	0
0	0	1	1
1	0	1	0
0	1	0	1
1	0	0	1

■ For each even ℓ consider an $\left(\begin{array}{l}\ell / 2\end{array}\right) \times \ell$ game

- Each row has exactly $\ell / 2$ 1s
- Every row is distinct

$\Omega(k \log k)$ lower bound for $\varepsilon=O\left(\frac{1}{\log k}\right)$

1	1	0	0
0	1	1	0
0	0	1	1
1	0	1	0
0	1	0	1
1	0	0	1

■ The value of the game is $\mathbf{0 . 5}$

$\Omega(k \log k)$ lower bound for $\varepsilon=O\left(\frac{1}{\log k}\right)$

1	1	0	0
0	1	1	0
0	0	1	1
1	0	1	0
0	1	0	1
1	0	0	1

■ The value of the game is 0.5
■ Column player plays uniformly \Rightarrow all rows have payoff 0.5

$\Omega(k \log k)$ lower bound for $\epsilon=O\left(\frac{1}{\log k}\right)$

1	1	0	0
0	1	1	0
0	0	1	1
1	0	1	0
0	1	0	1
1	0	0	1

■ The value of the game is 0.5
■ Column player plays uniformly \Rightarrow all rows have payoff 0.5
■ Row player plays uniformly \Rightarrow all columns have payoff 0.5

$\Omega(k \log k)$ lower bound for $\epsilon=O\left(\frac{1}{\log k}\right)$

- Game has value $\frac{1}{2}$

$\Omega(k \log k)$ lower bound for $\epsilon=O\left(\frac{1}{\log k}\right)$

- Game has value $\frac{\mathbf{1}}{\mathbf{2}}$

■ Column player must spread probability mass fairly evenly

$\Omega(k \log k)$ lower bound for $\varepsilon=O\left(\frac{1}{\log k}\right)$

- Game has value $\frac{\mathbf{1}}{2}$
- Column player must spread probability mass fairly evenly

■ Row player's payoff can't be too high ($>\frac{1}{2}+\epsilon$)

$\Omega(k \log k)$ lower bound for $\varepsilon=O\left(\frac{1}{\log k}\right)$

- Game has value $\frac{\mathbf{1}}{2}$

■ Column player must spread probability mass fairly evenly
■ Row player's payoff can't be too high ($>\frac{1}{2}+\boldsymbol{\epsilon}$)
■ Suppose a query algorithm makes few queries:
■ \exists row r played with low probability that received few queries

- Probability on queried cells of \boldsymbol{r} is low

$\Omega(k \log k)$ lower bound for $\epsilon=O\left(\frac{1}{\log k}\right)$

- Game has value $\frac{\mathbf{1}}{2}$
- Column player must spread probability mass fairly evenly

■ Row player's payoff can't be too high ($>\frac{1}{2}+\boldsymbol{\epsilon}$)
■ Suppose a query algorithm makes few queries:
■ \exists row r played with low probability that received few queries

- Probability on queried cells of \boldsymbol{r} is low

■ Replace all un-queried cells of \boldsymbol{r} with 1's

$\Omega(k \log k)$ lower bound for $\epsilon=O\left(\frac{1}{\log k}\right)$

- Game has value $\frac{1}{2}$
- Column player must spread probability mass fairly evenly
- Row player's payoff can't be too high (> $\frac{1}{2}+\epsilon$)
- Suppose a query algorithm makes few queries:

■ \exists row r played with low probability that received few queries

- Probability on queried cells of \boldsymbol{r} is low

■ Replace all un-queried cells of \boldsymbol{r} with 1's
■ Contradiction: regret of row player too high

Bimatrix games summary: ϵ-Nash

Queries

Quality of approximation

Bimatrix games summary: ϵ-Nash

■ Randomized algorithm which works with high probability
■ Adapt method of Bosse, Byrka, and Markakis
■ Approximately solve zero-sum game via multiplicative weights update

Well-supported approximate equilibria

■ Nash equilibrium:
Players cannot gain by unilateral deviation
only pure best responses can have probability >0
■ ϵ-Nash equilibrium:
Players gain at most ϵ by unilateral deviation
■ ϵ-well-supported Nash equilibrium (ϵ-WSNE):
only ϵ pure best responses can have probability >0

Bimatrix games: ϵ-WSNE

■ For the upper bound we adapt an algorithm of Kontogiannis and Spirakis

Outline

We study query complexity in:

1 Bimatrix games
2 Congestion games on parallel links
3 Other results

- Congestion games on DAGs

■ Graphical games

Outline

We study query complexity in:

1 Bimatrix games
2 Congestion games on parallel links
3 Other results

- Congestion games on DAGs
- Graphical games

Part 2: Congestion games

Parallel links

■ We have
■ A number of links \boldsymbol{m}; a number of players \boldsymbol{n}

Part 2: Congestion games

Parallel links

■ We have
■ A number of links \boldsymbol{m}; a number of players \boldsymbol{n}

- Latency functions

Part 2: Congestion games

Parallel links

■ We have

- A number of links \boldsymbol{m}; a number of players \boldsymbol{n}
- Latency functions

■ What is the query complexity of finding a pure equilibrium?

Part 2: Congestion games

Parallel links

- We have

■ A number of links \boldsymbol{m}; a number of players \boldsymbol{n}

- Latency functions

■ What is the query complexity of finding a pure equilibrium?
■ Query: assign at most \boldsymbol{n} players on each link
■ Doesn't have to sum to n; e.g. (n, n, n, \ldots, n) is a valid query!

Equilibrium with two links

Equilibrium with two links

Equilibrium with two links

Parallel links: results

$■$ Lower bound: $O(\log n)$
■ Upper bound: $O\left(\log (n) \cdot \frac{\log ^{2}(m)}{\log \log (m)}\right)$

Parallel links: results

■ Lower bound: $O(\log n)$ - construction with two links
$■$ Upper bound: $O\left(\log (n) \cdot \frac{\log ^{2}(m)}{\log \log (m)}\right)$

$O(\log n)$ lower bound (two links)

Parallel links: results

■ Lower bound: $O(\log n)$
■ Upper bound: $O\left(\log (n) \cdot \frac{\log ^{2}(m)}{\log \log (m)}\right)$

Algorithm

■ Start with all players in one block on cheapest link

Algorithm

■ Start with all players in one block on cheapest link
■ Each step: halve blocks \& compute a new equilibrium

Algorithm

■ Start with all players in one block on cheapest link
■ Each step: halve blocks \& compute a new equilibrium
■ Perform each step using $O\left(\log ^{2}(m)\right)$ queries

Algorithm

Algorithm

Algorithm

■ Observation: each link can receive at most one block

Algorithm

■ Observation: each link can receive at most one block
$■ \Longrightarrow$ at most \boldsymbol{m} blocks can be moved

Algorithm

■ One query: Add one block to each link to get costs

Algorithm

■ One query: Add one block to each link to get costs
■ How many blocks move? Guess

Algorithm

■ One query: Add one block to each link to get costs
■ How many blocks move? Guess
■ Guess + costs gives a single target cost for all links

Algorithm

■ One query: Add one block to each link to get costs
■ How many blocks move? Guess
■ Guess + costs gives a single target cost for all links
■ Is the guess correct? Parallel binary search

Algorithm

■ Nested binary search
■ Outer: guess how many move \mathbf{q} (determines target cost)
■ Inner: find how many want to move \boldsymbol{q}^{\prime} (given target cost)
■ Done if $\boldsymbol{q}=\boldsymbol{q}^{\prime}$, o/w compare \boldsymbol{q} and \boldsymbol{q}^{\prime} to drive outer search

Algorithm

■ Nested binary search
■ Outer: guess how many move \mathbf{q} (determines target cost)
■ Inner: find how many want to move \boldsymbol{q}^{\prime} (given target cost)

- Done if $\boldsymbol{q}=\boldsymbol{q}^{\prime}$, o/w compare \boldsymbol{q} and \boldsymbol{q}^{\prime} to drive outer search
- $\log ^{2}(m)$ queries

Algorithm

■ Overall query complexity: $O\left(\log (n) \cdot \log ^{2}(m)\right)$

Algorithm

■ Overall query complexity: $O\left(\log (n) \cdot \log ^{2}(m)\right)$
$■$ Slight improvement: split each block into $\log (\boldsymbol{m})$ blocks $O\left(\log (n) \cdot \log ^{2}(m) / \log \log (m)\right)$

Other results

Finding a pure Nash equilibrium in a symmetric network congestion game on a directed acyclic graph

■ $\boldsymbol{O}(\boldsymbol{n} \cdot|E|)$ payoff queries

Other results

Finding a pure Nash equilibrium in a symmetric network congestion game on a directed acyclic graph

■ $O(n \cdot|E|)$ payoff queries

Graphical games
■ For constant \boldsymbol{d}, the payoff query complexity of degree \boldsymbol{d} graphical games is polynomial

Open questions

■ Non-randomized algorithms for:
■ ϵ-Nash for $\epsilon<0.5$
■ ϵ-WSNE for $\epsilon<\mathbf{1}$
■ Better lower bounds for congestion games
■ Congestion games on general graphs
■ Other types of game
■ Three-or-more-player strategic form games
■ Asymmetric network congestion games

Related work

Sergiu Hart and Noam Nisan (2013)
The Query Complexity of Correlated Equilibria
International Symposium on Algorithmic Game Theory (SAGT)
Yakov Babichenko (2013)
Query Complexity of Approximate Nash Equilibria
http://arxiv.org/abs/1306.6686
Paul Goldberg and Aaron Roth (2013)
Bounds for the Query Complexity of Approximate Equilibria
http://eccc.hpi-web.de/report/2013/136/

Thank you

John Fearnley, Martin Gairing, Paul Goldberg, Rahul Savani (2013) Learning Equilibria of Games via Payoff Queries
ACM Conference on Electronic Commerce (EC)
http://arxiv.org/abs/1302.3116
John Fearnley and Rahul Savani (2013)
Finding Approximate Nash Equilibria of Bimatrix Games via Payoff Queries
Manuscript

