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Evolutionary graph theory

Evolution in biology / Population dynamics have been
mainly traditionally in homogeneous populations

However, in reality, the topology / structure of the population
can strongly affect the output of the dynamics.

Evolutionary graph theory has been introduced in
[Lieberman, Hauert, Nowak, Nature, 2005]

Main idea: arrange the population on a network (i.e. graph)
There are two types of vertices:

aggressive (“mutants”) ←→ fitness r ≥ 1,

non-aggressive (“residents”) ←→ fitness 1.

Time is discrete t = 1, 2, . . .
At every iteration t ≥ 1,

choose a vertex u with probability proportional to its fitness;

choose randomly a neighbor v ∈ N(u) (resp. an arc 〈uv〉);

replace v by an offspring of u.
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Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]:
(the “generalized Moran process”)

This random process defines a discrete (transient) Markov chain,
with two absorbing (i.e. stable) states:

all vertices black (fixation of the black mutants),

all vertices white (extinction of the black mutants).
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The main model in [Lieberman, Hauert, Nowak, Nature, 2005]:
(the “generalized Moran process”)

This random process defines a discrete (transient) Markov chain,
with two absorbing (i.e. stable) states:

all vertices black (fixation of the black mutants),

all vertices white (extinction of the black mutants).

The state space is the set of all vertex subsets of the graph,
i.e. exponentially many.

Definition (Lieberman et al., Nature, 2005)

Let G = (V , E ) be a graph and v ∈ V be a randomly chosen vertex of G .
The fixation probability fr (G ) of G is the probability that a mutant with
fitness r placed at v eventually takes over the whole graph G .

Paul Spirakis (CTI & Liverpool) Strong Bounds for Evolution in Networks October 2013 3 / 32



Evolutionary graph theory

When the graph G is directed, extreme phenomena can occur:

fixation with probability fr (G ) = 1
n ≈ 0 (one “source”),

neither fixation nor extinction (two or more “sources”),

fixation with probability fr (G ) ≈ 1 [Lieberman et al., Nature, 2005]
(for a more exact analysis: [D́ıaz, Goldberg, Mertzios, Richerby, Serna,
Spirakis, Royal Soc. A, 2013])
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fixation with probability fr (G ) = 1
n ≈ 0 (one “source”),

neither fixation nor extinction (two or more “sources”),

fixation with probability fr (G ) ≈ 1 [Lieberman et al., Nature, 2005]
(for a more exact analysis: [D́ıaz, Goldberg, Mertzios, Richerby, Serna,
Spirakis, Royal Soc. A, 2013])

In contrast, undirected graphs:

have a smoother behavior
(they reach fixation or extinction with probability 1),

it seems more difficult to find graphs with large / small fixation
probability,

they appear more naturally in applications
u influences v ⇒ v influences u.

⇒ We are mainly interested in undirected graphs.
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Evolutionary graph theory

Theorem ( Isothermal Theorem, Lieberman et al., Nature, 2005 )

Let G = (V , E ) be an undirected and regular graph (i.e. deg(u) = deg(v)

for every u, v ∈ V ). If r > 1, then fr (G ) =
1− 1

r

1− 1
rn
≈ 1− 1

r .

The complete graph acts as a “benchmark”

A graph G is called:

an amplifier if fr (G ) >
1− 1

r

1− 1
rn

, and

an suppressor if fr (G ) <
1− 1

r

1− 1
rn

.

Question 1: Do there exist strong undirected amplifiers / suppressors
of selection?

Question 2: How does the population structure affect the fixation
probability?
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A class of undirected suppressors of selection

For every n ≥ 1, we define the “clique-wheel” graph Gn

with 2n vertices:

clique with n vertices

induced cycle with n vertices

perfect matching between them
n-cliqueGn :

Theorem (Mertzios, Nikoletseas, Raptopoulos, Spirakis, TCS, 2013)

For every r ∈ (1, 4
3 ), the fixation probability of Gn is fGn(r) ≤ 1

2 (1− 1
r ),

as n→ ∞.
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Computation of fixation probabilities

Questions that were open until recently:

How can we compute the fixation/extinction probability for a given
graph?

Can we do this efficiently?

the resulting Markov chain implies a system of linear equations

however: exponentially many equations – in general one for every
vertex subset

Does the generalized Moran process reach absorption
(i.e. fixation or extinction) quickly?

Nothing is known until now, except immediate results for special cases

e.g. expected linear time for regular graphs

Paul Spirakis (CTI & Liverpool) Strong Bounds for Evolution in Networks October 2013 7 / 32



Computation of fixation probabilities

Our results: [D́ıaz, Goldberg, Mertzios, Richerby, Spirakis, SODA, 2012;
Algorithmica, to appear]

The generalized Moran process reaches absorption (either fixation
or extinction) in polynomial number of steps with high probability.

Two FPRAS (fully polynomial randomized approximation schemes)
for the problems of:

computing the fixation probability on general graphs for r ≥ 1

computing the extinction probability on general graphs for r > 0

Definition

An FPRAS for a function f is a randomized algorithm g that, given
input X , gives an output satisfying:

(1− ε)f (X ) ≤ g(X ) ≤ (1 + ε)f (X )

with probability at least 3
4 and has running time polynomial in |X | and 1

ε .
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Computation of fixation probabilities

General approach for the FPRAS:

simulate (polynomially many) times the generalized Moran process
until absorption is reached

count the number of simulations that reached fixation

The correctness of the FPRAS is based on two points:

1 expected polynomial time until absorption is reached

=⇒ every simulation needs polynomial number of steps

2 the fixation probability is polynomially upper/lower bounded
(i.e. not too big/small)

=⇒ a polynomial number of simulations suffices to estimate the
fixation/absorption probabilities.
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Upper / lower bounds

So far, the only known general bounds for the fixation probability:

Lemma (D́ıaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, SODA,
2012; Algorithmica, to appear)

Let G = (V , E ) be an undirected graph with n vertices. Then:

fr (G ) ≥ 1
n for any r ≥ 1

fr (G ) ≤ 1− 1
n+r for any r > 0

Tighter upper / lower bounds ⇒ better running time of these FPRAS.
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Upper / lower bounds

In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:

random placement of the initial mutant

However, some positions are more influential than others

We refine the notion of the fixation probability:

Definition

Let G = (V , E ) be a graph and S ⊆ V . The fixation probability fr (S)
of the set S is the probability that |S | mutants with fitness r placed
at the vertices of S eventually take over the whole graph G .

If S = {v}, we write fr (S) = fr (v).

⇒ the fixation probability of the graph G is fr (G ) = 1
n ∑

v∈V

fr (v)

We are interested in finding graphs with many strong / weak
starts fr (v) for the mutant
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Universal and selective amplifiers

Can we really reach fixation probabilities 1
n and 1− 1

n+r ?

Paul Spirakis (CTI & Liverpool) Strong Bounds for Evolution in Networks October 2013 12 / 32



Universal and selective amplifiers

Can we really reach fixation probabilities 1
n and 1− 1

n+r ?

Definition

Let G be an infinite class of undirected graphs. If for every r > r0 and
every graph G ∈ G with n ≥ n0 vertices:

fr (G ) ≥ 1− c(r )
g (n)

, then G is a class of g(n)-universal amplifiers,

fr (v) ≥ 1− c(r )
g (n)

for at least h(n) vertices v ,

then G is a class of (h(n), g(n))-selective amplifiers.

Moreover:

n-universal amplifiers are called strong universal amplifiers

(Θ(n), n)-selective amplifiers are called strong selective amplifiers
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Our results

First result:

Theorem

For any function g(n) = Ω(n
3
4+ε), where ε > 0, there exists no class G

of g(n)-universal amplifiers for any r > r0 = 1.
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Our results

First result:

Theorem

For any function g(n) = Ω(n
3
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Our results

Third result:

Theorem (Thermal Theorem)

Let G = (V , E ) be a connected undirected graph and r > 1.
Then fr (v) ≥ r−1

r+ deg v
degmin

for every v ∈ V .
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degmin

for every v ∈ V .

A generic lower bound:

for every undirected graph G
for every vertex v of G
it takes into account the structure of the graph

It extends the Isothermal Theorem of [Lieberman et al., Nature, 2005]:

fr (G ) ≈ 1− 1
r for regular graphs

(i.e. deg u = deg v for all vertices u, v ∈ V )

Almost tight bound:

for regular graphs: fr (v) ≥ r−1
r+1
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Theorem (Thermal Theorem)

Let G = (V , E ) be a connected undirected graph and r > 1.
Then fr (v) ≥ r−1

r+ deg v
degmin

for every v ∈ V .

Main idea:

the temperature of vertex v is 1
deg v

a hot vertex affects more often its neighbors than a cold vertex

If deg v is small ⇒ v is hot ⇒ fr (v) is guaranteed to be high
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Then fr (v) ≥ r−1

r+ deg v
degmin

for every v ∈ V .

Main idea:

the temperature of vertex v is 1
deg v

a hot vertex affects more often its neighbors than a cold vertex

If deg v is small ⇒ v is hot ⇒ fr (v) is guaranteed to be high

Corollary

In every graph G there exists at least one vertex v with fr (v) ≥ r−1
r+1

(i.e. independent of the size n).
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No strong universal amplifiers

Theorem

For any function g(n) = Ω(n
3
4+ε), where ε > 0, there exists no class G

of g(n)-universal amplifiers for any r > 1.

Proof sketch (by contradiction).

Let g(n) = Ω(n1−δ), where δ = 1
4 − ε < 1

4

Suppose that G is a class of g(n)-universal amplifiers,
i.e. for every r > 1 and every graph G ∈ G with n ≥ n0 vertices:

fr (G ) ≥ 1− c(r )
g (n)
≥ 1− c0(r )

n1−δ

for appropriate functions c(r) and c0(r).
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No strong universal amplifiers

Proof sketch (by contradiction).

We partition the vertices of G into three subsets:

V1 = {v ∈ V : fr (v) ≥ 1− c0(r)

n1−δ
}

V2 = {v ∈ V \ V1 : fr (v) ≥ 1− c1(r)

n1−2δ
}

V3 = {v ∈ V \ (V1 ∪ V2) : fr (v) ≤ 1− φ(n, r)

n1−2δ
}

for appropriate functions c1(r) and φ(n, r) = ω(1)

Since G is a class of g(n)-universal amplifiers ⇒ V1 6= ∅
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No strong universal amplifiers

Proof sketch (by contradiction).

We can prove that:

for every v ∈ V1: deg v ≤ c ′(r) · nδ

for every u ∈ N(v), v ∈ V1: deg u ≥ 1
c ′(r ) · n1−δ

for every v ∈ V2: deg v ≤ c ′′(r) · n2δ

for every u ∈ N(v), v ∈ V2: deg u ≥ 1
c ′′(r ) · n1−2δ

Therefore:

Since δ < 1
4 ⇒ 1− δ > 1− 2δ > 2δ > δ

⇒ every neighbor of a vertex v ∈ V1 ∪ V2 must belong to V3

⇒ V1 ∪ V2 is an independent set
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No strong universal amplifiers

Proof sketch (by contradiction).

Using an upper bound from
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Theor. Comp. Sci., 2013],
it follows:

Ω(n−3δ) ≤ c ′′′(r )
n1−δ , for some function c ′′′(r),

contradiction since δ < 1
4
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Strong selective amplifiers

For every n ≥ 1, we define the “urchin” graph Gn

with 2n vertices:

a clique with n vertices

an independent set with n vertices
(called “noses”)

a perfect matching between them

Gn :
n-clique

Our result:

Theorem

For every r > 5, the fixation probability of a nose v of Gn

is fr (v) ≥ 1− c(r )
n , where c(r) is a function depending only on r .
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Strong selective amplifiers

Consider a state with k ∈ {0, 1, . . . , n} infected noses

The infected clique vertices can be allocated as follows:

Qk
i ,x : among the neighbors of the infected noses, x are not infected

Qk
i ,x : among the neighbors of the non-infected noses, i are infected

Pk
i : i clique vertices are infected, as many of them as possible

Pk
i : are neighbors of infected noses

k

Pi :
i

(i ≤ k)

k

i
Pi :

(i > k)

k

x

iQk
i,x :

(0 ≤ x ≤ k)

(0 ≤ i ≤ n− k)
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Strong selective amplifiers

If i = 0 ⇒ Qk
0,x = Pk

k−x

If x = 0 ⇒ Qk
i ,0 = Pk

k+i

For any i and x , denote by qk
i ,x (resp. pk

i ) the probability that:

starting at state Qk
i ,x (resp. Pk

i ),

we arrive to a state with k + 1 infected noses

before arriving to a state with k − 1 infected noses

k

Pi :
i

(i ≤ k)

k

i
Pi :

(i > k)

k

x

iQk
i,x :

(0 ≤ x ≤ k)

(0 ≤ i ≤ n− k)
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Strong selective amplifiers

If i = 0 ⇒ Qk
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If x = 0 ⇒ Qk
i ,0 = Pk

k+i

For any i and x , denote by qk
i ,x (resp. pk

i ) the probability that:

starting at state Qk
i ,x (resp. Pk

i ),

we arrive to a state with k + 1 infected noses

before arriving to a state with k − 1 infected noses

Lemma

For all appropriate values of k , i , x: qk
i ,x > pk

k+i−x .

⇒ to compute a lower bound on the fixation probability fr (v) of a nose v :

whenever we have k infected noses and i infected clique vertices,

we assume that we are at state Pk
i

denote this relaxed Markov chain by M
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Strong selective amplifiers

We compute a lower bound for the fixation probability of state P1
0

To analyze the Markov chain M:

we decompose M into n− 1 Markov chains M1,M2, . . . ,Mn−1

Mk captures transitions of M between states with k infected noses

Mk has two absorbing states:

Fk+1 (arbitrary state with k + 1 infected noses) ⇒ switch to Mk+1

Fk−1 (arbitrary state with k − 1 infected noses) ⇒ switch to Mk−1

P k
0 P k

1 P k
2 P k

k−1 P k
k

P k
k+1 P k

n−1 P k
n

. . . . . .Mk :

P k−1
0 P k−1

0 P k−1
0 P k−1

0

P k+1
k+1 P k+1

k+1 P k+1
k+1Fk+1 Fk+1Fk+1

Fk−1 Fk−1Fk−1Fk−1
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Strong selective amplifiers

Since we need to compute a lower bound of the fixation probability:

whenever we arrive at state Fk+1 or state Fk−1,

we assume that we have the smallest umber of infected clique vertices

Therefore:

Fk−1 = Pk−1
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Strong selective amplifiers

To analyze the Markov chains Mk , k = 1, 2, . . . , n− 1:

we decompose every Mk into two Markov chains M1
k and M2
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. . .M1
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Strong selective amplifiers

Using this decomposition of the chain M into the chains {M1
k ,M2

k}n−1
k=1 :

. . .

M :

P 1
1 P 2

2 P 3
3

P 1
0 P 2

0 P 3
0P 0

0

P k
k P k+1

k+1

P k
0 P k+1

0P k−1
0

skk

1− skk hk
0

1− hk
0

. . .

P n
nP n−1

n−1

P n−1
0P n−2

0

a
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Strong selective amplifiers
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Relax M further: the infected vertices at Pk
0 are a subset of those at Pk
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Eliminate from M′ the states Pk
k ⇒ a birth-death process B
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Strong selective amplifiers

In the birth-death process B:

we can compute a lower bound for the probability that, starting at P1
0 ,

we arrive at Pn
n before arriving at P0

0

this provides a lower bound for the fixation probability of P1
0

in the original chain M

. . .

P 1
0 P 2

0P 0
0 P k

0 P k+1
0P k−1

0

. . .

P n
nP n−1

0P n−2
0

1− hk
0s

k
k

hk
0s

k
k

hn−1
0 sn−1

n−1
1− hn−1

0 sn−1
n−1

h1
0s

1
1

1− h1
0s

1
1

B :

Using these decompositions, we prove that:

Theorem

For every r > 5, the fixation probability of a nose v of Gn

is fr (v) ≥ 1− c(r )
n , where c(r) is a function depending only on r .

⇒ urchin graphs are ( n
2 , n)-amplifiers
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The Thermal Theorem

Theorem (Thermal Theorem)

Let G = (V , E ) be a connected undirected graph and r > 1.
Then fr (v) ≥ r−1

r+ deg v
degmin

for every v ∈ V .

Main idea for the proof:

define a system L0 of (exponentially many) linear equations
(one variable for every vertex subset S)

the solutions of L0 provide a lower bound for the fixation probabilities
of these sets S

construct from L0 a Markov chain M0

modify M0 into the chain M∗
0

for every i = 1, 2, . . . , n− 1: relax M∗
i−1 into the chain M∗

i

M∗
n−1 provides the desired lower bound
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The Thermal Theorem

For every vertex subset S ⊆ V :

the fixation probability fr (S) of S is computed by:

fr (S) =
∑xy∈E , x∈S, y /∈S

(
r 1

deg x fr (S + y) + 1
deg y fr (S − x)

)
∑xy∈E , x∈S , y /∈S

(
r

deg x + 1
deg y

)
where fr (∅) = 0 and fr (V ) = 1 (boundary conditions)
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(
r

deg x + 1
deg y

)
where fr (∅) = 0 and fr (V ) = 1 (boundary conditions)

For every such edge xy ∈ E (where x ∈ S and y /∈ S):

x “infects” y with probability proportional to 1
deg x

y “disinfects” x with probability proportional to 1
deg y
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where fr (∅) = 0 and fr (V ) = 1 (boundary conditions)

For every such edge xy ∈ E (where x ∈ S and y /∈ S):

x “infects” y with probability proportional to 1
deg x

y “disinfects” x with probability proportional to 1
deg y

⇒ for every vertex v ∈ V :

we define 1
deg v as the temperature of v

a “hot” vertex affects more often its neighbors than a “cold” vertex
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The Thermal Theorem

For every vertex subset S ⊆ V :

the fixation probability fr (S) of S is computed by:

fr (S) =
∑xy∈E , x∈S, y /∈S

(
r 1

deg x fr (S + y) + 1
deg y fr (S − x)

)
∑xy∈E , x∈S , y /∈S

(
r

deg x + 1
deg y

)
where fr (∅) = 0 and fr (V ) = 1 (boundary conditions)

Furthermore:

for every set S /∈ {∅, V } there exists a vertex x(S) ∈ S
and a vertex y(S) /∈ S such that x(S)y(S) ∈ E and:

fr (S) ≥

(
r 1

deg x(S)
fr (S + y(S)) + 1

deg y (S)
fr (S − x(S))

)
(

r
deg x(S)

+ 1
deg y (S)

)
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The Thermal Theorem

Therefore:

by replacing all “≥” with “=”, we obtain a lower bound for all fr (S)

for every set S /∈ {∅, V } there exists a vertex x(S) ∈ S
and a vertex y(S) /∈ S such that x(S)y(S) ∈ E and:

fr (S) ≥

(
r 1

deg x(S)
fr (S + y(S)) + 1

deg y (S)
fr (S − x(S))

)
(

r
deg x(S)

+ 1
deg y (S)

)
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The Thermal Theorem

Definition (the linear system L0)

Let G = (V , E ) be a graph and r > 1. Every vertex v ∈ V has a weight
(temperature) dv > 0. The linear system L0 on the variables pr (S),
where ∅ ⊂ S ⊂ V , is:

pr (S) =
r · dx(S) · pr (S + y(S)) + dy (S) · pr (S − x(S))

r · dx(S) + dy (S)

with boundary conditions pr (∅) = 0 and pr (V ) = 1.
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Let G = (V , E ) be a graph and r > 1. Every vertex v ∈ V has a weight
(temperature) dv > 0. The linear system L0 on the variables pr (S),
where ∅ ⊂ S ⊂ V , is:

pr (S) =
r · dx(S) · pr (S + y(S)) + dy (S) · pr (S − x(S))

r · dx(S) + dy (S)

with boundary conditions pr (∅) = 0 and pr (V ) = 1.

The system L0 defines naturally the Markov chain M0:

one state for every vertex subset S ⊆ V

states ∅ and V are absorbing

every non-absorbing state S has exactly two transitions to the states
S + y(S) and S − x(S), with transition probabilities

qS =
rdx(S)

rdx(S)+dy (S)
and 1− qS , respectively
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The Thermal Theorem

Definition (the linear system L0)

Let G = (V , E ) be a graph and r > 1. Every vertex v ∈ V has a weight
(temperature) dv > 0. The linear system L0 on the variables pr (S),
where ∅ ⊂ S ⊂ V , is:

pr (S) =
r · dx(S) · pr (S + y(S)) + dy (S) · pr (S − x(S))

r · dx(S) + dy (S)

with boundary conditions pr (∅) = 0 and pr (V ) = 1.

Observation

By setting dv = 1
deg v for every v ∈ V , it follows that fr (S) ≥ pr (S)

for every set S ⊆ V .
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The Thermal Theorem

We construct now the chain M∗
0 from the chain M0 as follows:

for every set S in M0:
S

S − u

S + v

qS

1− qS

S + v + y0

S + v − x0

qS+v

1− qS+v

inM0:

we add a new dummy state XS :

S

S − u

qS

1− qS

S + v + y0

S + v − x0

qS+v

1− qS+v

qS+v

1− qS+v

XS

S + v

inM∗
0:

⇒ All values of pr (S) in M∗
0 remain the same as in M0
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The Thermal Theorem

Consider an arbitrary numbering v0, v1, . . . , vn−1 of the vertices of G

For every i = 1, 2, . . . , n− 1, construct from M∗
i−1 the chain M∗

i
as follows:

1 for all sets S ⊂ V with y(S) = vi , change the transitions from XS :

S

S − u

XS

qS+vi

S + vi + y0

S + vi

S + vi − x0

1− qS+vi

S − x0

S + y0

S

S − u

XS qS+vi
S + vi + y0

S + vi

S + vi − x0

1− qS+vi M∗
i :M∗

i−1 :

2 for all these sets S , eliminate the dummy state XS

⇒ the values of pr (S) do not decrease in M∗
i

Lemma

For all these states S, the forward probability of S in M∗
i is

a monotone decreasing function of the temperature dvi of vi .
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The Thermal Theorem

We increase the temperature dvi in M∗
i to dmax

⇒ the values of pr (S) do not increase

At the end, in the chain M∗
n−1:

dv1 = dv2 = . . . = dvn−1 = dmax =
1

degmin

dv0 =
1

degv0

for every set S , the values of pr (S) are not larger than in M∗
0

We use techniques similar to the Isothermal Theorem
in [Lieberman et al., Nature, 2005] to prove that:

fr (v0) ≥
(r − 1)

r + dmax
dv0

=
(r − 1)

r + deg v0
degmin

v0 is chosen arbitrarily ⇒ the Thermal Theorem
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Summary and open problems

Evolutionary graph theory studies how network (graph) topology
influences evolution between interacting individuals.

We refined the notion of fixation probability to specific vertices v

We proved:

there exist no strong universal amplifiers

there exist strong selective amplifiers

there exist “quite” strong selective suppressors

the Thermal Theorem (lower bound)
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Summary and open problems

Do there exist stronger suppressors / amplifiers of selection?

the fixation probability of the strongest known amplifiers
of natural selection is 1− 1

r2 (“star”)

the fixation probability of the strongest known suppressors
of natural selection is 1

2 (1− 1
r ) (“clique-wheels”)

Is the fixation probability of all undirected graphs upper/lower
bounded by a function c(r) of the fitness r?

More types of mutants (many colors)?
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Thank you for your attention!
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