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Evolutionary graph theory

e Evolution in biology / Population dynamics have been
mainly traditionally in homogeneous populations

@ However, in reality, the topology / structure of the population
can strongly affect the output of the dynamics.

@ Evolutionary graph theory has been introduced in
[Lieberman, Hauert, Nowak, Nature, 2005]

e Main idea: arrange the population on a network (i.e. graph)
@ There are two types of vertices:

o aggressive (“mutants”) <— fitness r > 1,

e non-aggressive ( “residents”) <— fitness 1.
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Evolution in biology / Population dynamics have been
mainly traditionally in homogeneous populations

However, in reality, the topology / structure of the population
can strongly affect the output of the dynamics.

Evolutionary graph theory has been introduced in
[Lieberman, Hauert, Nowak, Nature, 2005]

Main idea: arrange the population on a network (i.e. graph)
There are two types of vertices:
o aggressive (“mutants”) <— fitness r > 1,
e non-aggressive ( “residents”) <— fitness 1.
Time is discrete t = 1,2, ...
At every iteration t > 1,
e choose a vertex u with probability proportional to its fitness;
o choose randomly a neighbor v € N(u) (resp. an arc (uv));

e replace v by an offspring of u.
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Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]:
(the “generalized Moran process”)
@ This random process defines a discrete (transient) Markov chain,
with two absorbing (i.e. stable) states:
o all vertices black (fixation of the black mutants),
o all vertices white (extinction of the black mutants).

@ The state space is the set of all vertex subsets of the graph,
i.e. exponentially many.

Definition (Lieberman et al., Nature, 2005)

Let G = (V, E) be a graph and v € V be a randomly chosen vertex of G.
The fixation probability f,(G) of G is the probability that a mutant with
fitness r placed at v eventually takes over the whole graph G.
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Evolutionary graph theory

@ When the graph G is directed, extreme phenomena can occur:

o fixation with probability #,(G) = L ~ 0 (one “source”),

Paul Spirakis (CTI & Liverpool) Strong Bounds for Evolution in Networks October 2013 4 /32



Evolutionary graph theory

@ When the graph G is directed, extreme phenomena can occur:

o fixation with probability £,(G) = 1

~ 0 (one “source"),

e neither fixation nor extinction (two or more “sources”),

Paul Spirakis (CTI & Liverpool) Strong Bounds for Evolution in Networks October 2013



Evolutionary graph theory

@ When the graph G is directed, extreme phenomena can occur:
N . - 1 “ "
o fixation with probability f,(G) = = ~ 0 (one “source”),
e neither fixation nor extinction (two or more “sources”),

o fixation with probability f,(G) ~ 1 [Lieberman et al., Nature, 2005]
(for a more exact analysis: [Diaz, Goldberg, Mertzios, Richerby, Serna,
Spirakis, Royal Soc. A, 2013])
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Evolutionary graph theory

@ When the graph G is directed, extreme phenomena can occur:
o fixation with probability #,(G) = L ~ 0 (one “source”),
e neither fixation nor extinction (two or more “sources”),

o fixation with probability f,(G) ~ 1 [Lieberman et al., Nature, 2005]
(for a more exact analysis: [Diaz, Goldberg, Mertzios, Richerby, Serna,
Spirakis, Royal Soc. A, 2013])

@ In contrast, undirected graphs:

e have a smoother behavior
(they reach fixation or extinction with probability 1),

o it seems more difficult to find graphs with large / small fixation
probability,

e they appear more naturally in applications
u influences v = v influences u.

= We are mainly interested in undirected graphs.

Paul Spirakis (CTI & Liverpool) Strong Bounds for Evolution in Networks October 2013 4 /32



Evolutionary graph theory

Theorem ( , Lieberman et al., Nature, 2005 )

Let G = (V, E) be an undirected and regular graph (i.e. deg(u) = deg(v)
1

for every u,v € V). If r > 1, then f,(G) = 11:i ~1-1
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Let G = (V, E) be an undirected and regular graph (i.e. deg(u) = deg(v)
1
for every u,v € V). If r > 1, then f,(G) = =)

ral1-1

1
1—7m

@ The complete graph acts as a “benchmark”

@ A graph G is called:

_1
o an amplifier if ,(G) > 11_7i and
. 1r—l
e an suppressor if f(G) < —F
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Let G = (V, E) be an undirected and regular graph (i.e. deg(u) = deg(v)
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@ The complete graph acts as a “benchmark”

@ A graph G is called:

1
o an amplifier if £,(G) > 11_% and
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o an suppressor if fr(G) < .

@ Question 1: Do there exist strong undirected amplifiers / suppressors
of selection?
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Evolutionary graph theory

Theorem ( , Lieberman et al., Nature, 2005 )

Let G = (V, E) be an undirected and regular graph (i.e. deg(u) = deg(v)
1

for every u,v € V). If r > 1, then f,(G) = lfi ~1-1

l—=

@ The complete graph acts as a “benchmark”

@ A graph G is called:

1
o an amplifier if £,(G) > 11_% and
1—1

o an suppressor if fr(G) < .

@ Question 1: Do there exist strong undirected amplifiers / suppressors
of selection?

@ Question 2: How does the population structure affect the fixation
probability?
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A class of undirected suppressors of selection

o For every n > 1, we define the “clique-wheel” graph G,
with 2n vertices:

e clique with n vertices
e induced cycle with n vertices

e perfect matching between them

Theorem (Mertzios, Nikoletseas, Raptopoulos, Spirakis, TCS, 2013)

For every r € (1, %), the fixation probability of G, is fc,(r) < 3(1—1),
asn— oo,
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Computation of fixation probabilities

Questions that were open until recently:

@ How can we compute the fixation/extinction probability for a given
graph?
@ Can we do this efficiently?

e the resulting Markov chain implies a system of linear equations

o however: exponentially many equations — in general one for every
vertex subset

@ Does the generalized Moran process reach absorption
(i.e. fixation or extinction) quickly?

Nothing is known until now, except immediate results for special cases

@ e.g. expected linear time for regular graphs
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Computation of fixation probabilities

Our results: [Diaz, Goldberg, Mertzios, Richerby, Spirakis, SODA, 2012;
Algorithmica, to appear]

@ The generalized Moran process reaches absorption (either fixation
or extinction) in polynomial number of steps with high probability.
e Two FPRAS (fully polynomial randomized approximation schemes)
for the problems of:
e computing the fixation probability on general graphs for r > 1

e computing the extinction probability on general graphs for r > 0
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Computation of fixation probabilities

Our results: [Diaz, Goldberg, Mertzios, Richerby, Spirakis, SODA, 2012;
Algorithmica, to appear]

@ The generalized Moran process reaches absorption (either fixation
or extinction) in polynomial number of steps with high probability.

e Two FPRAS (fully polynomial randomized approximation schemes)
for the problems of:

e computing the fixation probability on general graphs for r > 1
e computing the extinction probability on general graphs for r > 0

Definition
An FPRAS for a function f is a randomized algorithm g that, given
input X, gives an output satisfying:

(1-e)f(X) < g(X) < (1+¢)f(X)

with probability at least % and has running time polynomial in |X| and %

October 2013 8 /32
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Computation of fixation probabilities

General approach for the FPRAS:

@ simulate (polynomially many) times the generalized Moran process
until absorption is reached

@ count the number of simulations that reached fixation
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Computation of fixation probabilities

General approach for the FPRAS:

@ simulate (polynomially many) times the generalized Moran process
until absorption is reached

@ count the number of simulations that reached fixation

The correctness of the FPRAS is based on two points:

@ expected polynomial time until absorption is reached

—> every simulation needs polynomial number of steps

@ the fixation probability is polynomially upper/lower bounded
(i.e. not too big/small)

—> a polynomial number of simulations suffices to estimate the
fixation/absorption probabilities.
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Upper / lower bounds

So far, the only known general bounds for the fixation probability:

Lemma (Diaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, SODA,

2012; Algorithmica, to appear)

Let G = (V, E) be an undirected graph with n vertices. Then:
e £(G) > % for any r > 1
o f,(G) <1— = foranyr >0

e Tighter upper / lower bounds = better running time of these FPRAS.

Paul Spirakis (CTI & Liverpool)
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Upper / lower bounds

@ In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:
e random placement of the initial mutant

@ However, some positions are more influential than others
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Upper / lower bounds

@ In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:

e random placement of the initial mutant
@ However, some positions are more influential than others

@ We refine the notion of the fixation probability:

Definition

Let G = (V,E) be a graph and S C V. The fixation probability f,(S)
of the set S is the probability that |S| mutants with fitness r placed
at the vertices of S eventually take over the whole graph G.

If S = {v}, we write £,(S) = f,(v).

= the fixation probability of the graph G is £,(G) =% ) £ (v)
veV

@ We are interested in finding graphs with many strong / weak
starts f,(v) for the mutant

October 2013 11 / 32
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Universal and selective amplifiers

o Can we really reach fixation probabilities - and 1 — =7
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Universal and selective amplifiers

o Can we really reach fixation probabilities - and 1 — =7

o Similarly we distinguish suppressors of selection:

Let G be an infinite class of undirected graphs. If for every r > 1 and
every graph G € G with n > ng(r) vertices:
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Universal and selective amplifiers

o Can we really reach fixation probabilities - and 1 — =7

o Similarly we distinguish suppressors of selection:

Definition

Let G be an infinite class of undirected graphs. If for every r > 1 and
every graph G € G with n > ng(r) vertices:

e £(G) < ;E;)) then G is a class of g(n)-universal suppressors,

o f(v) < ;g,:)) for at least h(n) vertices v,
then G is a class of (h(n), g(n))-selective suppressors.
Moreover:

@ n-universal suppressors are called strong universal suppressors

@ (O(n), n)-selective suppressors are called strong selective suppressors
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Our results

First result:

For any function g(n) = Q(ni*), where ¢ > 0, there exists no class G
of g(n)-universal amplifiers for any r > ry = 1.
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Our results

First result:

For any function g(n) = Q(ni*), where ¢ > 0, there exists no class G
of g(n)-universal amplifiers for any r > ry = 1.

Therefore:

There exists no infinite class of strong universal amplifiers.
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Our results

Second result:

The class G = {G,, : n > 1} of urchin graphs is a class of (5, n)-selective
amplifiers.
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Our results
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Theorem
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Our results

Second result:

Theorem

The class G = {G,, : n > 1} of urchin graphs is a class of (5, n)-selective
amplifiers.

| \

Theorem

For every function ¢(n) = w(1), where ¢p(n) < +/n,

there exists a class Q¢( n of ( (/)(n,; = (/)(”n) )-selective suppressors.

Therefore there exist:

@ strong selective amplifiers

@ “quite” strong selective suppressors
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Our results

Third result:

Let G = (V, E) be a connected undirected graph and r > 1.
Then f,.(v) > r+r’1 for every v € V.

deg v

degmin

Paul Spirakis (CTI & Liverpool) Strong Bounds for Evolution in Networks October 2013 14 / 32



Our results

Third result:

Let G = (V, E) be a connected undirected graph and r > 1.
Then f,.(v) > r;;l for every v € V.

deg v

degmin

@ A generic lower bound:
o for every undirected graph G
o for every vertex v of G
e it takes into account the structure of the graph
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Then f,.(v) > r+r’1 for every v € V.

deg v

degmin

@ A generic lower bound:

o for every undirected graph G
o for every vertex v of G
e it takes into account the structure of the graph

@ It extends the Isothermal Theorem of [Lieberman et al., Nature, 2005]:
o f(G)~=1— % for regular graphs
(i.e. deg u = deg v for all vertices u, v € V)
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Our results

Third result:

Let G=(V,E) be a connected undirected graph and r > 1.

Then f,.(v) > for every v € V.

deg v
deg"1|n

@ A generic lower bound:

o for every undirected graph G
o for every vertex v of G
e it takes into account the structure of the graph

o It extends the Isothermal Theorem of [Lieberman et al., Nature, 2005]:
o f(G) ~1— 1 for regular graphs
(i.e. degu = deg v for all vertices u, v € V)
@ Almost tight bound:
o for regular graphs: f(v) > £ —1
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Our results

Third result:

Let G = (V, E) be a connected undirected graph and r > 1.
Then f,.(v) > r;;l for every v € V.

deg v

degmin

e Main idea:
: 1
o the temperature of vertex v is degv
e a hot vertex affects more often its neighbors than a cold vertex
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e Main idea:
: 1
o the temperature of vertex v is degv
e a hot vertex affects more often its neighbors than a cold vertex

o If degv is small = v is hot = f,(v) is guaranteed to be high
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Our results

Third result:

Let G = (V, E) be a connected undirected graph and r > 1.
Then f,.(v) > r+r’1 for every v € V.

deg v

degmin

e Main idea:
: 1
e the temperature of vertex v is degv
e a hot vertex affects more often its neighbors than a cold vertex

o If degv is small = v is hot = f,(v) is guaranteed to be high

In every graph G there exists at least one vertex v with f,(v) >
(i.e. independent of the size n).
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No strong universal amplifiers

For any function g(n) = Q(ni*), where ¢ > 0, there exists no class G
of g(n)-universal amplifiers for any r > 1.
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No strong universal amplifiers

For any function g(n) = Q(ni*), where ¢ > 0, there exists no class G
of g(n)-universal amplifiers for any r > 1.

Proof sketch (by contradiction).
o Let g(n) = Q(n* %), where 6 = 3 —e <
@ Suppose that G is a class of g(n)-universal amplifiers,
i.e. for every r > 1 and every graph G € G with n > ng vertices:
f(6)21- 20 >1- 94
for appropriate functions c(r) and c(r).
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No strong universal amplifiers

Proof sketch (by contradiction).

@ We partition the vertices of G into three subsets:

Vi = {ve Viﬂ(V)Zl_?l(rg}

for appropriate functions c1(r) and ¢(n, r) = w(1)
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No strong universal amplifiers

Proof sketch (by contradiction).

@ We partition the vertices of G into three subsets:

Vi = {ve Viﬂ(V)Zl_?l(rg}

Vo = {VE V\Vl:fr(v) >1- ;-1(,25}

for appropriate functions c1(r) and ¢(n, r) = w(1)
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No strong universal amplifiers

Proof sketch (by contradiction).

@ We partition the vertices of G into three subsets:

Vi = {ve Viﬂ(V)Zl_?l(rg}

Vo = {VE V\Vl:fr(v) >1- ;-1(,25}

Vs = {veV\(ViUWy):f(v)<1- 4;(1,22?}

for appropriate functions c1(r) and ¢(n, r) = w(1)
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No strong universal amplifiers

Proof sketch (by contradiction).

@ We partition the vertices of G into three subsets:

Vi = {ve Viﬁ(V)Zl_?l(rg}

Vo = {VE V\Vl:fr(v) >1- ;-1(,25}

Vs = {veV\(ViUWy):f(v)<1- 4;(1,22?}

for appropriate functions c1(r) and ¢(n, r) = w(1)

@ Since G is a class of g(n)-universal amplifiers = V; # @
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No strong universal amplifiers

Proof sketch (by contradiction).

We can prove that:

o for every v € Vi: degv < c'(r)-n
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No strong universal amplifiers

Proof sketch (by contradiction).

We can prove that:

o for every v € Vi: degv < c'(r)-n

o forevery ue N(v), v € Vy: degu > ,%) -nt=0
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No strong universal amplifiers

Proof sketch (by contradiction).

We can prove that:

o for every v € Vi: degv < (r)-n’
e for every u e N(v), v e Vi: deg u > C,%r) . pt—o
o for every v € Vs: degv < ”(r) - n?
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No strong universal amplifiers

Proof sketch (by contradiction).

We can prove that:

o for every v € Vi: degv < (r)-n’

e for every u e N(v), v e Vi: deg u > C,%r) . pt—o
o for every v € V5! degv < ¢'(r) - n%
e for every u € N(v), v € Vy: degu > C/%(r) . pl—20
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No strong universal amplifiers

Proof sketch (by contradiction).

We can prove that:

o for every v € Vi: degv < (r)-n’

e for every u e N(v), v e Vi: deg u > C,%r) . pt—o

o for every v € Vs: degv < ”(r) - n?

e for every u € N(v), v € Vy: degu > C/ftr) . pl—20
Therefore:

o Sinced<i = 1-6 >1-25 >25 >
= every neighbor of a vertex v € V4 U V, must belong to V3
= V1 U V; is an independent set
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No strong universal amplifiers

Proof sketch (by contradiction).

Using an upper bound from

[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Theor. Comp. Sci., 2013],
it follows:

g
o Q(n=3) < <0 for some function ¢”/(r),
n

@ contradiction since § < %

Paul Spirakis (CTI & Liverpool)

Strong Bounds for Evolution in Networks

October 2013 16 / 32



g selective amplifiers

@ For every n > 1, we define the “urchin” graph G,
with 2n vertices:

e a clique with n vertices

e an independent set with n vertices Gn:
(called “noses”)

e a perfect matching between them
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Strong selective amplifiers

@ For every n > 1, we define the “urchin” graph G,
with 2n vertices:

e a clique with n vertices

e an independent set with n vertices Gn:
(called “noses”)

e a perfect matching between them

Our result:

For every r > 5, the fixation probability of a nose v of G,

isf(v) >1— Lnf) where c(r) is a function depending only on r.
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Strong selective amplifiers

@ Consider a state with k € {0, 1,..., n} infected noses

o Cq
3
J

0o, o
000G
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Strong selective amplifiers

@ Consider a state with k € {0, 1,..., n} infected noses
@ The infected clique vertices can be allocated as follows:

Q,-"X: among the neighbors of the infected noses, x are not infected
among the neighbors of the non-infected noses, i are infected

/\k

Qi e
o

0o, o
000G

(0<i<n—k)
(0<z<k)
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Strong selective amplifiers

@ Consider a state with k € {0, 1,..., n} infected noses
@ The infected clique vertices can be allocated as follows:
Q,-"X: among the neighbors of the infected noses, x are not infected

among the neighbors of the non-infected noses, i are infected

P,-k: i clique vertices are infected, as many of them as possible
are neighbors of infected noses

Qi e
o

(0<i<n—k)
(0<z<k)
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Strong selective amplifiers

@ Consider a state with k € {0, 1,..., n} infected noses
@ The infected clique vertices can be allocated as follows:
Q,-"X: among the neighbors of the infected noses, x are not infected

among the neighbors of the non-infected noses, i are infected

P,-k: i clique vertices are infected, as many of them as possible
are neighbors of infected noses

Qi e
o

(0<i<n—k)
(0<z<k)

(i>k)
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Strong selective amplifiers

o Ifi=0= Qk, =Pf,

(0<i<n—k)
(0<z<k)
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0o Ifi=0= Qf, = Pf
o If x=0= Qf =Pf,,

(0<i<n—k)
(0<z<k)
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Strong selective amplifiers

0 Ifi=0= Qf, =P;,
o If x=0= Qf = Pf,;
For any 7/ and x, denote by qffx (resp. p,k) the probability that:
e starting at state QF, (resp. Pf),
@ we arrive to a state with k 4 1 infected noses
@ before arriving to a state with kK — 1 infected noses

koL
Qiy: o

(0<i<n—k)
(0<z<k)

(i>k)
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Strong selective amplifiers

0 Ifi=0= Qf, =P;,
o If x=0= Qf = Pf,;
For any 7/ and x, denote by qffx (resp. p,k) the probability that:
o starting at state Qf, (resp. Pf),
@ we arrive to a state with k + 1 infected noses
@ before arriving to a state with kK — 1 infected noses

For all appropriate values of k, i, x: qffx > p’,j+,-_x.
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Strong selective amplifiers

0 Ifi=0= Qf, =P;,
o If x=0= Qf = Pf,;
For any 7/ and x, denote by qffx (resp. p,k) the probability that:
o starting at state Qf, (resp. Pf),
@ we arrive to a state with k + 1 infected noses
@ before arriving to a state with kK — 1 infected noses

For all appropriate values of k, i, x: qffx > p’,j+,-_x.

= to compute a lower bound on the fixation probability f,(v) of a nose v:
@ whenever we have k infected noses and i infected clique vertices,
@ we assume that we are at state P,-k
@ denote this relaxed Markov chain by M
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Strong selective amplifiers

@ We compute a lower bound for the fixation probability of state P&
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Strong selective amplifiers

@ We compute a lower bound for the fixation probability of state P&
@ To analyze the Markov chain M:
e we decompose M into n — 1 Markov chains M1, M>, ..., Mp_1

@ M captures transitions of M between states with k infected noses
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Strong selective amplifiers

@ We compute a lower bound for the fixation probability of state P&

@ To analyze the Markov chain M:
e we decompose M into n — 1 Markov chains M1, M>, ..., Mp_1

@ M captures transitions of M between states with k infected noses

@ M has two absorbing states:
o Fj. 1 (arbitrary state with k + 1 infected noses) = switch to M,

o Fj 1 (arbitrary state with k — 1 infected noses) = switch to M _q

October 2013 20 /
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Strong selective amplifiers

@ We compute a lower bound for the fixation probability of state P&

@ To analyze the Markov chain M:
e we decompose M into n — 1 Markov chains M1, Mo,..., M, 1

@ M captures transitions of M between states with k infected noses

@ M has two absorbing states:
o Fj. 1 (arbitrary state with k + 1 infected noses) = switch to M,
o Fj 1 (arbitrary state with k — 1 infected noses) = switch to M _q

Frp Fiop Fiop

' P P Py

n—1

Fiy Fyy Fiy Fyy

October 2013
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Strong selective amplifiers

Since we need to compute a lower bound of the fixation probability:
@ whenever we arrive at state Fjy1 or state Fy_q,
@ we assume that we have the smallest umber of infected clique vertices

Therefore:
o Fr_1= Pé_l (no infected clique noses)
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Strong selective amplifiers

Since we need to compute a lower bound of the fixation probability:
@ whenever we arrive at state Fjy1 or state Fy_q,
@ we assume that we have the smallest umber of infected clique vertices

Therefore:
o Fr_1= Pg_l (no infected clique noses)
k+1
° Fri1= 'Dkil
(we need at least k + 1 infected clique vertices to infect another nose)

Fi Frp Fi
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Strong selective amplifiers

Since we need to compute a lower bound of the fixation probability:

@ whenever we arrive at state Fjy1 or state Fy_q,
@ we assume that we have the smallest umber of infected clique vertices

Therefore:
o Fr_1= Pg_l (no infected clique noses)
k+1
° Fri1= 'Dkil
(we need at least k + 1 infected clique vertices to infect another nose)

k+1 k41 k+1
Pk+l kal Pk+l

Mk-i

n—1 n

k—1 k—1 k—1
Pl.) P(J PU

Paul Spirakis (CTI & Liverpool) Strong Bounds for Evolution in Networks October 2013



Strong selective amplifiers

To analyze the Markov chains My, k=1,2,...,n—1:
e we decompose every M into two Markov chains M?} and M?

Sk+1 k41 Sk+1
P P P

k41 k+1

P/fi»l Pk

k—1 k—1 k—1 k—1
Fy Py Fo Fo
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To analyze the Markov chains My, k=1,2,...,n—1:
e we decompose every M into two Markov chains M?} and M?

k+1 k1 k+1
P P B
Py Pf Py PEyh
My, :
Py Pia Py
RS S
L N I T
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To analyze the Markov chains My, k=1,2,...,n—1:
e we decompose every M into two Markov chains M?} and M?

Sk+1 k1 k41
P Ly B
Py pf Py PEyh
My, :
K k
Ly Pia Py
ROoRS R R

ML
k+1 k+1

leH leH

k k

Pt Pt
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Using this decomposition of the chain M into the chains { M}, M2}/ -1 :

P 7 7 P P
M: > > >
A A A A A
5 Py P} P Pt Py Rt

Paul Spirakis (CTI & Liverpool)

Strong Bounds for Evolution in Networks

n—2
PO

Pl Py
p——>—0
A
J

Pél -1

October 2013
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Strong selective amplifiers

Using this decomposition of the chain M into the chains {/\/ll, Mk o 1 :

P} P2 P} P} P P B
. > > > p—>—0
M :
A A A A A A
o - - ¢ - - )
B B i 7 ! Py Bt R R

transitions from P}: through the Markov chain M,

October 2013 22/
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Strong selective amplifiers

Using this decomposition of the chain M into the chains {/\/ll, Mk o 1 :

P} P2 P} P} P P B
. > > > p—>—0
M :
A A A A A A
o - - ¢ - - )
B B i 7 ! Py Bt R R

transitions from P}: through the Markov chain M,

transitions from Pf: through the Markov chain My

October 2013 22/
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Strong selective amplifiers

Using this decomposition of the chain M into the chains {/\/ll, Mk o 1 :

P} P2 P} P} P P B
. > > > p—>—0
M :
A A A A A A
7y I i B R Py Bt R R

Relax M further: the infected vertices at P§ are a subset of those at P

ke ket 1 n—1 m
Plc Pk+1 Pn—l Pn
p——>—0
A
J
ki—1 k k+1 -2 n—1
Fy PO PnJr P(]" F
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ng selective amplifiers

Using this decomposition of the chain M into the chains {/\/ll, Mk o 1 :

P} P2 P} P} P P B
. > > > p—>—0
M :
A A A A A A
o - - o - )
7y I i B R Py Bt R R

Relax M further: the infected vertices at P§ are a subset of those at P

. . .
P L oy b
p——>—0
A
J
Fy Py F R By Fy A L

Eliminate from M’ the states P,’(‘ = a birth-death process 53
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Strong selective amplifiers

In the birth-death process 3:

@ we can compute a lower bound for the probability that, starting at P&,
we arrive at P} before arriving at Pg

B :
7 B I P A B! Py
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Strong selective amplifiers

In the birth-death process 3:
@ we can compute a lower bound for the probability that, starting at P&,
we arrive at P} before arriving at Pg
@ this provides a lower bound for the fixation probability of P&
in the original chain M

B :
7 B I P A B! Py
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Strong selective amplifiers

In the birth-death process 3:

@ we can compute a lower bound for the probability that, starting at P&,
we arrive at P} before arriving at Pg

@ this provides a lower bound for the fixation probability of P&
in the original chain M

B:
R 7 R oA 7 B BR

Using these decompositions, we prove that:

For every r > 5, the fixation probability of a nose v of G,

isf(v) >1-— Lnf) where c(r) is a function depending only on r.

n

= urchin graphs are (5, n)-amplifiers
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The Thermal Theorem

Let G = (V, E) be a connected undirected graph and r > 1.
Then f.(v) > r+’_1 for every v € V.

deg v

degmin
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The Thermal Theorem

Let G = (V,E) be a connected undirected graph and r > 1.

Then f.(v) > for every v € V.

deg v
degpmin

Main idea for the proof:

o define a system Ly of (exponentially many) linear equations
(one variable for every vertex subset S)

@ the solutions of Ly provide a lower bound for the fixation probabilities
of these sets S
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The Thermal Theorem

Let G = (V,E) be a connected undirected graph and r > 1.

Then f.(v) > for every v € V.

deg v
degpmin

Main idea for the proof:

o define a system Ly of (exponentially many) linear equations
(one variable for every vertex subset S)

@ the solutions of Ly provide a lower bound for the fixation probabilities
of these sets S

@ construct from Ly a Markov chain M
e modify My into the chain M
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The Thermal Theorem

Let G = (V,E) be a connected undirected graph and r > 1.

Then f.(v) > for every v € V.

deg v
degpmin

Main idea for the proof:

o define a system Ly of (exponentially many) linear equations
(one variable for every vertex subset S)

the solutions of Ly provide a lower bound for the fixation probabilities
of these sets S

construct from Lg a Markov chain My
modify My into the chain M
for every i =1,2,...,n—1: relax M7?_; into the chain M

1 provides the desired lower bound
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The Thermal Theorem

For every vertex subset S C V:
e the fixation probability f,(S) of S is computed by:

Tyt xes, yes (Faszf(S+7) + a5 (S —x))

r 1
nyGE, x€S, y¢S (degx + degy)

fr(S) =

where f,(®) =0 and f,(V) =1 (boundary conditions)
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The Thermal Theorem

For every vertex subset S C V:

e the fixation probability f,(S) of S is computed by:

Tyt xes, yes (Faszf(S+7) + a5 (S —x))

r 1
nyGE, x€S, y¢S (degx + degy)

fr(S) =

where f,(®) =0 and f,(V) =1 (boundary conditions)

For every such edge xy € E (where x € S and y ¢ S):

@ x “infects” y with probability proportional to de}gx

e y “disinfects” x with probability proportional to

1
degy
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The Thermal Theorem

For every vertex subset S C V:

e the fixation probability f,(S) of S is computed by:

Tyt xes, yes (Faszf(S+7) + a5 (S —x))

f(S) =
nyGE, x€S, y¢S (@ + degy)

where f,(®) =0 and f,(V) =1 (boundary conditions)

For every such edge xy € E (where x € S and y ¢ S):
@ x “infects” y with probability proportional to

1
deg x

e y “disinfects” x with probability proportional to delgy

= for every vertex v € V:

@ we define @ as the temperature of v

@ a “hot" vertex affects more often its neighbors than a “cold” vertex
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The Thermal Theorem

For every vertex subset S C V:
e the fixation probability f,(S) of S is computed by:

Tyt xes, yes (Faszf(S+7) + a5 (S —x))

f(S) =
nyGE, x€S, y¢S (@ + degy)

where f,(®) =0 and f,(V) =1 (boundary conditions)

Furthermore:

o for every set S ¢ {@, V'} there exists a vertex x(5) € S
and a vertex y(S) ¢ S such that x(S)y(S) € E and:

(rmfr(s +y(5) + qpors (S - X(S)))

(degx< 5" degy<s>)

f(S) >
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The Thermal Theorem

Therefore:

@ by replacing all “>" with “=", we obtain a lower bound for all £,(S)

o for every set S ¢ {@, V'} there exists a vertex x(S5) € S
and a vertex y(S) ¢ S such that x(S)y(S) € E and:

(rmfr(s +y(8) + qpors (S — X(S)))

<deg§<(5) + degi/(S))

f.(S) >
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The Thermal Theorem

Definition (the linear system Lg)

Let G = (V, E) be a graph and r > 1. Every vertex v € V has a weight
(temperature) d, > 0. The linear system Ly on the variables p,(S),
where ® C S C V, is:

r-dys) - pr(S+y(S)) +dys) - pr(S—x(S))

r S) =
pr(3) r-dy(s) +dy(s)

with boundary conditions p,(®@) = 0 and p,(V) = 1.
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The Thermal Theorem

Definition (the linear system Lg)

Let G = (V, E) be a graph and r > 1. Every vertex v € V has a weight
(temperature) d, > 0. The linear system Ly on the variables p,(S),
where ® C S C V, is:

r-dys) - Pr(S+y(S)) +dys) - pr(S = x(S))

r S) =
pr(3) r-dy(s) +dy(s)

with boundary conditions p,(®@) = 0 and p,(V) = 1.

The system Lg defines naturally the Markov chain My:
@ one state for every vertex subset S C V
o states & and V are absorbing
@ every non-absorbing state S has exactly two transitions to the states
S+ y(S) and S — x(S), with transition probabilities

rds
gs = rd x5

——=— and 1 — qgg, respectivel
(s)Fdy(s) qs P y

Paul Spirakis (CTI & Liverpool) Strong Bounds for Evolution in Networks October 2013 26 / 32



The Thermal Theorem

Definition (the linear system Lg)

Let G = (V, E) be a graph and r > 1. Every vertex v € V has a weight

(temperature) d, > 0. The linear system Ly on the variables p,(S),

where ® C S C V, is:

r-dys) - pPr(S+y(5) +dys) - pr(S —x(5))
r-dys) +dys)

Pr(s) =

with boundary conditions p,(®@) = 0 and p,(V) = 1.

Observation

By setting d, = % for every v € V, it follows that f,(S) > p,(S)

for every set S C V.
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The Thermal Theorem

We construct now the chain M from the chain Mg as follows:

o for every set S in Mq:
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The Thermal Theorem

We construct now the chain M from the chain Mg as follows:

o for every set S in Mq:

SHv s+

in Mg: 1= G54
1—gs+v

S+v—u1xo
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The Thermal Theorem

We construct now the chain M from the chain Mg as follows:

o for every set S in Mq:

qs . qS+v

+u s+

in Mg: 1= G54
1—gs+v

S—u S+v—u1xo

= All values of p,(S) in M{ remain the same as in M
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Thermal Theorem

@ Consider an arbitrary numbering vp, v, ..., v,—1 of the vertices of G
e Forevery i=1,2,...,n—1, construct from M7 _; the chain M}
as follows:

© for all sets S C V with y(S) = v;, change the transitions from Xs:

Xg

S+ vi+yo

M

Paul Spirakis (CTI & Liverpool) Strong Bounds for Evolution in Networks October 2013 28 / 32



The Thermal Theorem

@ Consider an arbitrary numbering vp, v, ..., v,—1 of the vertices of G
e Forevery i=1,2,...,n—1, construct from M7 _; the chain M}
as follows:

© for all sets S C V with y(S) = v;, change the transitions from Xs:

Qs oS+

/

S+vi+yo

M

= the values of p,(S) do not decrease in M?
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Thermal Theorem

@ Consider an arbitrary numbering vp, v, ..., v,—1 of the vertices of G
e Forevery i=1,2,...,n—1, construct from M7 _; the chain M}
as follows:
© for all sets S C V with y(S) = v;, change the transitions from Xs:
54, eSS+

o

S+vi+yo

M

S+ —xo

S+ —xo

LS*J'Q
@ for all these sets S, eliminate the dummy state Xg

= the values of p,(S) do not decrease in M?
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T hermal Theorem

e Consider an arbitrary numbering vp, vi, ..., v,—1 of the vertices of G
e Forevery i=1,2,...,n—1, construct from M7 _; the chain M}
as follows:
© for all sets S C V with y(S) = v;, change the transitions from Xs:

qStv, ___—® S+
-

S+vi+yo

M

S+ —xo

@ for all these sets S, eliminate the dummy state Xg

= the values of p,(S) do not decrease in M?

For all these states S, the forward probability of S in M7 is
a monotone decreasing function of the temperature d,, of v;.
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T hermal Theorem

e We increase the temperature d,, in M7 to dmnax

= the values of p,(S) do not increase
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The Thermal Theorem

e We increase the temperature d,, in M7 to dmnax

= the values of p,(S) do not increase

At the end, in the chain M} _;:

— — — — — 1
o dy =dy,=...=dy , = Onax = g
_ 1

o for every set S, the values of p,(S) are not larger than in M
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The Thermal Theorem

e We increase the temperature d,, in M7 to dmnax

= the values of p,(S) do not increase

At the end, in the chain M} _;:

— — — — — 1
o dy =dy,=...=dy , = Onax = g
_ 1

o for every set S, the values of p,(S) are not larger than in M

@ We use techniques similar to the Isothermal Theorem
in [Lieberman et al., Nature, 2005] to prove that:

£(vo) > (r—=1)  (r—1)

r+ d‘;r‘llax r_|_ degV.O
0

@ vg is chosen arbitrarily = the Thermal Theorem
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Summary and open problems

e Evolutionary graph theory studies how network (graph) topology
influences evolution between interacting individuals.
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Summary and open problems

e Evolutionary graph theory studies how network (graph) topology
influences evolution between interacting individuals.

@ We refined the notion of fixation probability to specific vertices v
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Summary and open problems

e Evolutionary graph theory studies how network (graph) topology
influences evolution between interacting individuals.

@ We refined the notion of fixation probability to specific vertices v

@ We proved:
o there exist no strong universal amplifiers
o there exist strong selective amplifiers
o there exist “quite” strong selective suppressors

o the Thermal Theorem (lower bound)
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Summary and open problems

@ Do there exist stronger suppressors / amplifiers of selection?

o the fixation probability of the strongest known amplifiers

of natural selection is 1 — % (“star")

o the fixation probability of the strongest known suppressors

of natural selection is 4(1 — 1) (“clique-wheels")
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Summary and open problems

@ Do there exist stronger suppressors / amplifiers of selection?

o the fixation probability of the strongest known amplifiers

of natural selection is 1 — % (“star")

o the fixation probability of the strongest known suppressors

of natural selection is 4(1 — 1) (“clique-wheels")

@ Is the fixation probability of all undirected graphs upper/lower
bounded by a function ¢(r) of the fitness r?
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Summary and open problems

@ Do there exist stronger suppressors / amplifiers of selection?

o the fixation probability of the strongest known amplifiers

of natural selection is 1 — % (“star")

o the fixation probability of the strongest known suppressors

of natural selection is 4(1 — 1) (“clique-wheels")

@ Is the fixation probability of all undirected graphs upper/lower
bounded by a function ¢(r) of the fitness r?

@ More types of mutants (many colors)?
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Thank you for your attention!
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