Strong Bounds for Evolution in Networks

Paul G. Spirakis ${ }^{1,2}$

ESRC workshop on Algorithmic Game Theory Department of Mathematics, London School of Economics

These results have been presented in:

- Theor. Comp. Science 2013: Natural Models for Evolution on Networks, by G. Mertzios ${ }^{3}$, S. Nikoletseas ${ }^{1}$, C. Raptopoulos ${ }^{1}$, and P. Spirakis ${ }^{1,2}$
- SODA 2012; Algorithmica: Approximating Fixation Probabilities in the Generalized Moran Process, by J. Díaz ${ }^{4}$, L.A. Goldberg ${ }^{5}$, G. Mertzios ${ }^{3}$, D. Richerby ${ }^{5}$, M. Serna ${ }^{4}$, and P. Spirakis ${ }^{1,2}$
- ICALP 2013: Strong Bounds for Evolution in Undirected Graphs, by G. Mertzios ${ }^{3}$ and P. Spirakis ${ }^{1,2}$
${ }^{1}$ CTI \& University of Patras, Greece, ${ }^{2}$ University of Liverpool, UK, ${ }^{3}$ Durham University, UK, ${ }^{4}$ Universitat Politécnica de Catalunya, Spain, ${ }^{5}$ University of Oxford, UK

Evolutionary graph theory

- Evolution in biology / Population dynamics have been mainly traditionally in homogeneous populations
- However, in reality, the topology / structure of the population can strongly affect the output of the dynamics.
- Evolutionary graph theory has been introduced in [Lieberman, Hauert, Nowak, Nature, 2005]
- Main idea: arrange the population on a network (i.e. graph)
- There are two types of vertices:
- aggressive ("mutants") \longleftrightarrow fitness $r \geq 1$,
- non-aggressive ("residents") \longleftrightarrow fitness 1 .

Evolutionary graph theory

- Evolution in biology / Population dynamics have been mainly traditionally in homogeneous populations
- However, in reality, the topology / structure of the population can strongly affect the output of the dynamics.
- Evolutionary graph theory has been introduced in [Lieberman, Hauert, Nowak, Nature, 2005]
- Main idea: arrange the population on a network (i.e. graph)
- There are two types of vertices:
- aggressive ("mutants") \longleftrightarrow fitness $r \geq 1$,
- non-aggressive ("residents") \longleftrightarrow fitness 1 .
- Time is discrete $t=1,2, \ldots$
- At every iteration $t \geq 1$,
- choose a vertex u with probability proportional to its fitness;
- choose randomly a neighbor $v \in N(u)$ (resp. an arc $\langle u v\rangle$);
- replace v by an offspring of u.

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

- This random process defines a discrete (transient) Markov chain, with two absorbing (i.e. stable) states:

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

- This random process defines a discrete (transient) Markov chain, with two absorbing (i.e. stable) states:
- all vertices black (fixation of the black mutants),

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

- This random process defines a discrete (transient) Markov chain, with two absorbing (i.e. stable) states:
- all vertices black (fixation of the black mutants),
- all vertices white (extinction of the black mutants).

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

- This random process defines a discrete (transient) Markov chain, with two absorbing (i.e. stable) states:
- all vertices black (fixation of the black mutants),
- all vertices white (extinction of the black mutants).
- The state space is the set of all vertex subsets of the graph, i.e. exponentially many.

Evolutionary graph theory

The main model in [Lieberman, Hauert, Nowak, Nature, 2005]: (the "generalized Moran process")

- This random process defines a discrete (transient) Markov chain, with two absorbing (i.e. stable) states:
- all vertices black (fixation of the black mutants),
- all vertices white (extinction of the black mutants).
- The state space is the set of all vertex subsets of the graph, i.e. exponentially many.

Definition (Lieberman et al., Nature, 2005)

Let $G=(V, E)$ be a graph and $v \in V$ be a randomly chosen vertex of G. The fixation probability $f_{r}(G)$ of G is the probability that a mutant with fitness r placed at v eventually takes over the whole graph G.

Evolutionary graph theory

- When the graph G is directed, extreme phenomena can occur:
- fixation with probability $f_{r}(G)=\frac{1}{n} \approx 0$ (one "source"),

Evolutionary graph theory

- When the graph G is directed, extreme phenomena can occur:
- fixation with probability $f_{r}(G)=\frac{1}{n} \approx 0$ (one "source"),
- neither fixation nor extinction (two or more "sources"),

Evolutionary graph theory

- When the graph G is directed, extreme phenomena can occur:
- fixation with probability $f_{r}(G)=\frac{1}{n} \approx 0$ (one "source"),
- neither fixation nor extinction (two or more "sources"),
- fixation with probability $f_{r}(G) \approx 1$ [Lieberman et al., Nature, 2005] (for a more exact analysis: [Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, Royal Soc. A, 2013])

Evolutionary graph theory

- When the graph G is directed, extreme phenomena can occur:
- fixation with probability $f_{r}(G)=\frac{1}{n} \approx 0$ (one "source"),
- neither fixation nor extinction (two or more "sources"),
- fixation with probability $f_{r}(G) \approx 1$ [Lieberman et al., Nature, 2005] (for a more exact analysis: [Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, Royal Soc. A, 2013])
- In contrast, undirected graphs:
- have a smoother behavior
(they reach fixation or extinction with probability 1),

Evolutionary graph theory

- When the graph G is directed, extreme phenomena can occur:
- fixation with probability $f_{r}(G)=\frac{1}{n} \approx 0$ (one "source"),
- neither fixation nor extinction (two or more "sources"),
- fixation with probability $f_{r}(G) \approx 1$ [Lieberman et al., Nature, 2005] (for a more exact analysis: [Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, Royal Soc. A, 2013])
- In contrast, undirected graphs:
- have a smoother behavior
(they reach fixation or extinction with probability 1),
- it seems more difficult to find graphs with large / small fixation probability,

Evolutionary graph theory

- When the graph G is directed, extreme phenomena can occur:
- fixation with probability $f_{r}(G)=\frac{1}{n} \approx 0$ (one "source"),
- neither fixation nor extinction (two or more "sources"),
- fixation with probability $f_{r}(G) \approx 1$ [Lieberman et al., Nature, 2005] (for a more exact analysis: [Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, Royal Soc. A, 2013])
- In contrast, undirected graphs:
- have a smoother behavior
(they reach fixation or extinction with probability 1),
- it seems more difficult to find graphs with large / small fixation probability,
- they appear more naturally in applications
u influences $v \Rightarrow v$ influences u.

Evolutionary graph theory

- When the graph G is directed, extreme phenomena can occur:
- fixation with probability $f_{r}(G)=\frac{1}{n} \approx 0$ (one "source"),
- neither fixation nor extinction (two or more "sources"),
- fixation with probability $f_{r}(G) \approx 1$ [Lieberman et al., Nature, 2005] (for a more exact analysis: [Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, Royal Soc. A, 2013])
- In contrast, undirected graphs:
- have a smoother behavior
(they reach fixation or extinction with probability 1),
- it seems more difficult to find graphs with large / small fixation probability,
- they appear more naturally in applications
u influences $v \Rightarrow v$ influences u.
\Rightarrow We are mainly interested in undirected graphs.

Evolutionary graph theory

Theorem (Isothermal Theorem, Lieberman et al., Nature, 2005)
Let $G=(V, E)$ be an undirected and regular graph (i.e. $\operatorname{deg}(u)=\operatorname{deg}(v)$ for every $u, v \in V$). If $r>1$, then $f_{r}(G)=\frac{1-\frac{1}{r}}{1-\frac{1}{r T}} \approx 1-\frac{1}{r}$.

Evolutionary graph theory

Theorem (Isothermal Theorem, Lieberman et al., Nature, 2005)
Let $G=(V, E)$ be an undirected and regular graph (i.e. $\operatorname{deg}(u)=\operatorname{deg}(v)$ for every $u, v \in V$). If $r>1$, then $f_{r}(G)=\frac{1-\frac{1}{r}}{1-\frac{1}{r T}} \approx 1-\frac{1}{r}$.

- The complete graph acts as a "benchmark"
- A graph G is called:
- an amplifier if $f_{r}(G)>\frac{1-\frac{1}{r}}{1-\frac{1}{r^{n}}}$, and
- an suppressor if $f_{r}(G)<\frac{1-\frac{1}{r}}{1-\frac{1}{r^{n}}}$.

Evolutionary graph theory

Theorem (Isothermal Theorem, Lieberman et al., Nature, 2005)

Let $G=(V, E)$ be an undirected and regular graph (i.e. $\operatorname{deg}(u)=\operatorname{deg}(v)$ for every $u, v \in V)$. If $r>1$, then $f_{r}(G)=\frac{1-\frac{1}{r}}{1-\frac{1}{r^{\pi}}} \approx 1-\frac{1}{r}$.

- The complete graph acts as a "benchmark"
- A graph G is called:
- an amplifier if $f_{r}(G)>\frac{1-\frac{1}{r}}{1-\frac{1}{r^{n}}}$, and
- an suppressor if $f_{r}(G)<\frac{1-\frac{1}{r}}{1-\frac{1}{r^{n}}}$.
- Question 1: Do there exist strong undirected amplifiers / suppressors of selection?

Evolutionary graph theory

Theorem (Isothermal Theorem, Lieberman et al., Nature, 2005)

Let $G=(V, E)$ be an undirected and regular graph (i.e. $\operatorname{deg}(u)=\operatorname{deg}(v)$ for every $u, v \in V)$. If $r>1$, then $f_{r}(G)=\frac{1-\frac{1}{r}}{1-\frac{1}{r^{\pi}}} \approx 1-\frac{1}{r}$.

- The complete graph acts as a "benchmark"
- A graph G is called:
- an amplifier if $f_{r}(G)>\frac{1-\frac{1}{r}}{1-\frac{1}{r^{n}}}$, and
- an suppressor if $f_{r}(G)<\frac{1-\frac{1}{r}}{1-\frac{1}{r^{n}}}$.
- Question 1: Do there exist strong undirected amplifiers / suppressors of selection?
- Question 2: How does the population structure affect the fixation probability?

A class of undirected suppressors of selection

- For every $n \geq 1$, we define the "clique-wheel" graph G_{n} with $2 n$ vertices:
- clique with n vertices
- induced cycle with n vertices
- perfect matching between them

Theorem (Mertzios, Nikoletseas, Raptopoulos, Spirakis, TCS, 2013)
For every $r \in\left(1, \frac{4}{3}\right)$, the fixation probability of G_{n} is $f_{G_{n}}(r) \leq \frac{1}{2}\left(1-\frac{1}{r}\right)$, as $n \rightarrow \infty$.

Computation of fixation probabilities

Questions that were open until recently:

- How can we compute the fixation/extinction probability for a given graph?
- Can we do this efficiently?
- the resulting Markov chain implies a system of linear equations
- however: exponentially many equations - in general one for every vertex subset
- Does the generalized Moran process reach absorption (i.e. fixation or extinction) quickly?

Nothing is known until now, except immediate results for special cases

- e.g. expected linear time for regular graphs

Computation of fixation probabilities

Our results: [Díaz, Goldberg, Mertzios, Richerby, Spirakis, SODA, 2012; Algorithmica, to appear]

- The generalized Moran process reaches absorption (either fixation or extinction) in polynomial number of steps with high probability.
- Two FPRAS (fully polynomial randomized approximation schemes) for the problems of:
- computing the fixation probability on general graphs for $r \geq 1$
- computing the extinction probability on general graphs for $r>0$

Computation of fixation probabilities

Our results: [Díaz, Goldberg, Mertzios, Richerby, Spirakis, SODA, 2012; Algorithmica, to appear]

- The generalized Moran process reaches absorption (either fixation or extinction) in polynomial number of steps with high probability.
- Two FPRAS (fully polynomial randomized approximation schemes) for the problems of:
- computing the fixation probability on general graphs for $r \geq 1$
- computing the extinction probability on general graphs for $r>0$

Definition

An FPRAS for a function f is a randomized algorithm g that, given input X, gives an output satisfying:

$$
(1-\varepsilon) f(X) \leq g(X) \leq(1+\varepsilon) f(X)
$$

with probability at least $\frac{3}{4}$ and has running time polynomial in $|X|$ and $\frac{1}{\varepsilon}$.

Computation of fixation probabilities

General approach for the FPRAS:

- simulate (polynomially many) times the generalized Moran process until absorption is reached
- count the number of simulations that reached fixation

Computation of fixation probabilities

General approach for the FPRAS:

- simulate (polynomially many) times the generalized Moran process until absorption is reached
- count the number of simulations that reached fixation

The correctness of the FPRAS is based on two points:
(1) expected polynomial time until absorption is reached \Longrightarrow every simulation needs polynomial number of steps
(2) the fixation probability is polynomially upper/lower bounded (i.e. not too big/small)
\Longrightarrow a polynomial number of simulations suffices to estimate the fixation/absorption probabilities.

Upper / lower bounds

So far, the only known general bounds for the fixation probability:
Lemma (Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, SODA, 2012; Algorithmica, to appear)
Let $G=(V, E)$ be an undirected graph with n vertices. Then:

- $f_{r}(G) \geq \frac{1}{n}$ for any $r \geq 1$
- $f_{r}(G) \leq 1-\frac{1}{n+r}$ for any $r>0$
- Tighter upper / lower bounds \Rightarrow better running time of these FPRAS.

Upper / lower bounds

- In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:
- random placement of the initial mutant
- However, some positions are more influential than others

Upper / lower bounds

- In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:
- random placement of the initial mutant
- However, some positions are more influential than others
- We refine the notion of the fixation probability:

Definition

Let $G=(V, E)$ be a graph and $S \subseteq V$. The fixation probability $f_{r}(S)$ of the set S is the probability that $|S|$ mutants with fitness r placed at the vertices of S eventually take over the whole graph G.

Upper / lower bounds

- In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:
- random placement of the initial mutant
- However, some positions are more influential than others
- We refine the notion of the fixation probability:

Definition

Let $G=(V, E)$ be a graph and $S \subseteq V$. The fixation probability $f_{r}(S)$ of the set S is the probability that $|S|$ mutants with fitness r placed at the vertices of S eventually take over the whole graph G.
If $S=\{v\}$, we write $f_{r}(S)=f_{r}(v)$.

Upper / lower bounds

- In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:
- random placement of the initial mutant
- However, some positions are more influential than others
- We refine the notion of the fixation probability:

Definition

Let $G=(V, E)$ be a graph and $S \subseteq V$. The fixation probability $f_{r}(S)$ of the set S is the probability that $|S|$ mutants with fitness r placed at the vertices of S eventually take over the whole graph G.
If $S=\{v\}$, we write $f_{r}(S)=f_{r}(v)$.
\Rightarrow the fixation probability of the graph G is $f_{r}(G)=\frac{1}{n} \sum_{v \in V} f_{r}(v)$

Upper / lower bounds

- In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:
- random placement of the initial mutant
- However, some positions are more influential than others
- We refine the notion of the fixation probability:

Definition

Let $G=(V, E)$ be a graph and $S \subseteq V$. The fixation probability $f_{r}(S)$ of the set S is the probability that $|S|$ mutants with fitness r placed at the vertices of S eventually take over the whole graph G.
If $S=\{v\}$, we write $f_{r}(S)=f_{r}(v)$.
\Rightarrow the fixation probability of the graph G is $f_{r}(G)=\frac{1}{n} \sum_{v \in V} f_{r}(v)$

- We are interested in finding graphs with many strong / weak starts $f_{r}(v)$ for the mutant

Universal and selective amplifiers

- Can we really reach fixation probabilities $\frac{1}{n}$ and $1-\frac{1}{n+r}$?

Universal and selective amplifiers

- Can we really reach fixation probabilities $\frac{1}{n}$ and $1-\frac{1}{n+r}$?

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every $r>r_{0}$ and every graph $G \in \mathcal{G}$ with $n \geq n_{0}$ vertices:

- $f_{r}(G) \geq 1-\frac{c(r)}{g(n)}$, then \mathcal{G} is a class of $g(n)$-universal amplifiers,

Universal and selective amplifiers

- Can we really reach fixation probabilities $\frac{1}{n}$ and $1-\frac{1}{n+r}$?

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every $r>r_{0}$ and every graph $G \in \mathcal{G}$ with $n \geq n_{0}$ vertices:

- $f_{r}(G) \geq 1-\frac{c(r)}{g(n)}$, then \mathcal{G} is a class of $g(n)$-universal amplifiers,
- $f_{r}(v) \geq 1-\frac{c(r)}{g(n)}$ for at least $h(n)$ vertices v, then \mathcal{G} is a class of $(h(n), g(n))$-selective amplifiers.

Universal and selective amplifiers

- Can we really reach fixation probabilities $\frac{1}{n}$ and $1-\frac{1}{n+r}$?

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every $r>r_{0}$ and every graph $G \in \mathcal{G}$ with $n \geq n_{0}$ vertices:

- $f_{r}(G) \geq 1-\frac{c(r)}{g(n)}$, then \mathcal{G} is a class of $g(n)$-universal amplifiers,
- $f_{r}(v) \geq 1-\frac{c(r)}{g(n)}$ for at least $h(n)$ vertices v, then \mathcal{G} is a class of $(h(n), g(n))$-selective amplifiers.
Moreover:
- n-universal amplifiers are called strong universal amplifiers

Universal and selective amplifiers

- Can we really reach fixation probabilities $\frac{1}{n}$ and $1-\frac{1}{n+r}$?

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every $r>r_{0}$ and every graph $G \in \mathcal{G}$ with $n \geq n_{0}$ vertices:

- $f_{r}(G) \geq 1-\frac{c(r)}{g(n)}$, then \mathcal{G} is a class of $g(n)$-universal amplifiers,
- $f_{r}(v) \geq 1-\frac{c(r)}{g(n)}$ for at least $h(n)$ vertices v, then \mathcal{G} is a class of $(h(n), g(n))$-selective amplifiers.
Moreover:
- n-universal amplifiers are called strong universal amplifiers
- $(\Theta(n), n)$-selective amplifiers are called strong selective amplifiers

Universal and selective amplifiers

- Can we really reach fixation probabilities $\frac{1}{n}$ and $1-\frac{1}{n+r}$?
- Similarly we distinguish suppressors of selection:

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every $r>1$ and every graph $G \in \mathcal{G}$ with $n \geq n_{0}(r)$ vertices:

- $f_{r}(G) \leq \frac{c(r)}{g(n)}$, then \mathcal{G} is a class of $g(n)$-universal suppressors,

Universal and selective amplifiers

- Can we really reach fixation probabilities $\frac{1}{n}$ and $1-\frac{1}{n+r}$?
- Similarly we distinguish suppressors of selection:

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every $r>1$ and every graph $G \in \mathcal{G}$ with $n \geq n_{0}(r)$ vertices:

- $f_{r}(G) \leq \frac{c(r)}{g(n)}$, then \mathcal{G} is a class of $g(n)$-universal suppressors,
- $f_{r}(v) \leq \frac{c(r)}{g(n)}$ for at least $h(n)$ vertices v, then \mathcal{G} is a class of $(h(n), g(n))$-selective suppressors.

Universal and selective amplifiers

- Can we really reach fixation probabilities $\frac{1}{n}$ and $1-\frac{1}{n+r}$?
- Similarly we distinguish suppressors of selection:

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every $r>1$ and every graph $G \in \mathcal{G}$ with $n \geq n_{0}(r)$ vertices:

- $f_{r}(G) \leq \frac{c(r)}{g(n)}$, then \mathcal{G} is a class of $g(n)$-universal suppressors,
- $f_{r}(v) \leq \frac{c(r)}{g(n)}$ for at least $h(n)$ vertices v, then \mathcal{G} is a class of $(h(n), g(n))$-selective suppressors.

Moreover:

- n-universal suppressors are called strong universal suppressors
- $(\Theta(n), n)$-selective suppressors are called strong selective suppressors

Our results

First result:

Theorem

For any function $g(n)=\Omega\left(n^{\frac{3}{4}+\varepsilon}\right)$, where $\varepsilon>0$, there exists no class \mathcal{G} of $g(n)$-universal amplifiers for any $r>r_{0}=1$.

Our results

First result:

Theorem

For any function $g(n)=\Omega\left(n^{\frac{3}{4}+\varepsilon}\right)$, where $\varepsilon>0$, there exists no class \mathcal{G} of $g(n)$-universal amplifiers for any $r>r_{0}=1$.

Therefore:

Corollary

There exists no infinite class of strong universal amplifiers.

Our results

Second result:

Theorem

The class $\mathcal{G}=\left\{G_{n}: n \geq 1\right\}$ of urchin graphs is a class of $\left(\frac{n}{2}, n\right)$-selective amplifiers.

Our results

Second result:

Theorem

The class $\mathcal{G}=\left\{G_{n}: n \geq 1\right\}$ of urchin graphs is a class of $\left(\frac{n}{2}, n\right)$-selective amplifiers.

Theorem

For every function $\phi(n)=\omega(1)$, where $\phi(n) \leq \sqrt{n}$, there exists a class $\mathcal{G}_{\phi(n)}$ of $\left(\frac{n}{\phi(n)+1}, \frac{n}{\phi(n)}\right)$-selective suppressors.

Our results

Second result:

Theorem

The class $\mathcal{G}=\left\{G_{n}: n \geq 1\right\}$ of urchin graphs is a class of $\left(\frac{n}{2}, n\right)$-selective amplifiers.

Theorem

For every function $\phi(n)=\omega(1)$, where $\phi(n) \leq \sqrt{n}$, there exists a class $\mathcal{G}_{\phi(n)}$ of $\left(\frac{n}{\phi(n)+1}, \frac{n}{\phi(n)}\right)$-selective suppressors.

Therefore there exist:

- strong selective amplifiers

Our results

Second result:

Theorem

The class $\mathcal{G}=\left\{G_{n}: n \geq 1\right\}$ of urchin graphs is a class of $\left(\frac{n}{2}, n\right)$-selective amplifiers.

Theorem

For every function $\phi(n)=\omega(1)$, where $\phi(n) \leq \sqrt{n}$, there exists a class $\mathcal{G}_{\phi(n)}$ of $\left(\frac{n}{\phi(n)+1}, \frac{n}{\phi(n)}\right)$-selective suppressors.

Therefore there exist:

- strong selective amplifiers
- "quite" strong selective suppressors

Our results

Third result:

Theorem (Thermal Theorem)

Let $G=(V, E)$ be a connected undirected graph and $r>1$. Then $f_{r}(v) \geq \frac{r-1}{r+\frac{\operatorname{deg} v}{\operatorname{deg}_{\text {min }}}}$ for every $v \in V$.

Our results

Third result:

Theorem (Thermal Theorem)

Let $G=(V, E)$ be a connected undirected graph and $r>1$. Then $f_{r}(v) \geq \frac{r-1}{r+\frac{\operatorname{deg} v}{\operatorname{deg}_{\text {min }}}}$ for every $v \in V$.

- A generic lower bound:
- for every undirected graph G
- for every vertex v of G
- it takes into account the structure of the graph

Our results

Third result:

Theorem (Thermal Theorem)

Let $G=(V, E)$ be a connected undirected graph and $r>1$.
Then $f_{r}(v) \geq \frac{r-1}{r+\frac{\operatorname{deg}^{2}}{\operatorname{deg}_{\text {min }}}}$ for every $v \in V$.

- A generic lower bound:
- for every undirected graph G
- for every vertex v of G
- it takes into account the structure of the graph
- It extends the Isothermal Theorem of [Lieberman et al., Nature, 2005]:
- $f_{r}(G) \approx 1-\frac{1}{r}$ for regular graphs
(i.e. $\operatorname{deg} u=\operatorname{deg} v$ for all vertices $u, v \in V$)

Our results

Third result:

Theorem (Thermal Theorem)

Let $G=(V, E)$ be a connected undirected graph and $r>1$.
Then $f_{r}(v) \geq \frac{r-1}{r+\frac{\operatorname{deg} v}{\operatorname{deg}_{\text {min }}}}$ for every $v \in V$.

- A generic lower bound:
- for every undirected graph G
- for every vertex v of G
- it takes into account the structure of the graph
- It extends the Isothermal Theorem of [Lieberman et al., Nature, 2005]:
- $f_{r}(G) \approx 1-\frac{1}{r}$ for regular graphs
(i.e. $\operatorname{deg} u=\operatorname{deg} v$ for all vertices $u, v \in V$)
- Almost tight bound:
- for regular graphs: $f_{r}(v) \geq \frac{r-1}{r+1}$

Our results

Third result:

Theorem (Thermal Theorem)

Let $G=(V, E)$ be a connected undirected graph and $r>1$. Then $f_{r}(v) \geq \frac{r-1}{r+\frac{\operatorname{deg}^{2}}{\operatorname{deg}_{\text {min }}}}$ for every $v \in V$.

- Main idea:
- the temperature of vertex v is $\frac{1}{\operatorname{deg} v}$
- a hot vertex affects more often its neighbors than a cold vertex

Our results

Third result:

Theorem (Thermal Theorem)

Let $G=(V, E)$ be a connected undirected graph and $r>1$. Then $f_{r}(v) \geq \frac{r-1}{r+\frac{\operatorname{deg} v}{\operatorname{deg}_{\text {min }}}}$ for every $v \in V$.

- Main idea:
- the temperature of vertex v is $\frac{1}{\operatorname{deg} v}$
- a hot vertex affects more often its neighbors than a cold vertex
- If deg v is small $\Rightarrow v$ is hot $\Rightarrow f_{r}(v)$ is guaranteed to be high

Our results

Third result:

Theorem (Thermal Theorem)

Let $G=(V, E)$ be a connected undirected graph and $r>1$. Then $f_{r}(v) \geq \frac{r-1}{r+\frac{\operatorname{deg} v}{\operatorname{deg} \mathrm{~g}_{\text {min }}}}$ for every $v \in V$.

- Main idea:
- the temperature of vertex v is $\frac{1}{\operatorname{deg} v}$
- a hot vertex affects more often its neighbors than a cold vertex
- If $\operatorname{deg} v$ is small $\Rightarrow v$ is hot $\Rightarrow f_{r}(v)$ is guaranteed to be high

Corollary

In every graph G there exists at least one vertex v with $f_{r}(v) \geq \frac{r-1}{r+1}$ (i.e. independent of the size n).

No strong universal amplifiers

Theorem

For any function $g(n)=\Omega\left(n^{\frac{3}{4}+\varepsilon}\right)$, where $\varepsilon>0$, there exists no class \mathcal{G} of $g(n)$-universal amplifiers for any $r>1$.

No strong universal amplifiers

Theorem

For any function $g(n)=\Omega\left(n^{\frac{3}{4}+\varepsilon}\right)$, where $\varepsilon>0$, there exists no class \mathcal{G} of $g(n)$-universal amplifiers for any $r>1$.

Proof sketch (by contradiction).

- Let $g(n)=\Omega\left(n^{1-\delta}\right)$, where $\delta=\frac{1}{4}-\varepsilon<\frac{1}{4}$
- Suppose that \mathcal{G} is a class of $g(n)$-universal amplifiers, i.e. for every $r>1$ and every graph $G \in \mathcal{G}$ with $n \geq n_{0}$ vertices:

$$
f_{r}(G) \geq 1-\frac{c(r)}{g(n)} \geq 1-\frac{c_{0}(r)}{n^{1-\delta}}
$$

for appropriate functions $c(r)$ and $c_{0}(r)$.

No strong universal amplifiers

Proof sketch (by contradiction).

- We partition the vertices of G into three subsets:

$$
V_{1}=\left\{v \in V: f_{r}(v) \geq 1-\frac{c_{0}(r)}{n^{1-\delta}}\right\}
$$

for appropriate functions $c_{1}(r)$ and $\phi(n, r)=\omega(1)$

No strong universal amplifiers

Proof sketch (by contradiction).

- We partition the vertices of G into three subsets:

$$
\begin{aligned}
& V_{1}=\left\{v \in V: f_{r}(v) \geq 1-\frac{c_{0}(r)}{n^{1-\delta}}\right\} \\
& V_{2}=\left\{v \in V \backslash V_{1}: f_{r}(v) \geq 1-\frac{c_{1}(r)}{n^{1-2 \delta}}\right\}
\end{aligned}
$$

for appropriate functions $c_{1}(r)$ and $\phi(n, r)=\omega(1)$

No strong universal amplifiers

Proof sketch (by contradiction).

- We partition the vertices of G into three subsets:

$$
\begin{aligned}
& V_{1}=\left\{v \in V: f_{r}(v) \geq 1-\frac{c_{0}(r)}{n^{1-\delta}}\right\} \\
& V_{2}=\left\{v \in V \backslash V_{1}: f_{r}(v) \geq 1-\frac{c_{1}(r)}{n^{1-2 \delta}}\right\} \\
& V_{3}=\left\{v \in V \backslash\left(V_{1} \cup V_{2}\right): f_{r}(v) \leq 1-\frac{\phi(n, r)}{n^{1-2 \delta}}\right\}
\end{aligned}
$$

for appropriate functions $c_{1}(r)$ and $\phi(n, r)=\omega(1)$

No strong universal amplifiers

Proof sketch (by contradiction).

- We partition the vertices of G into three subsets:

$$
\begin{aligned}
& V_{1}=\left\{v \in V: f_{r}(v) \geq 1-\frac{c_{0}(r)}{n^{1-\delta}}\right\} \\
& V_{2}=\left\{v \in V \backslash V_{1}: f_{r}(v) \geq 1-\frac{c_{1}(r)}{n^{1-2 \delta}}\right\} \\
& V_{3}=\left\{v \in V \backslash\left(V_{1} \cup V_{2}\right): f_{r}(v) \leq 1-\frac{\phi(n, r)}{n^{1-2 \delta}}\right\}
\end{aligned}
$$

for appropriate functions $c_{1}(r)$ and $\phi(n, r)=\omega(1)$

- Since \mathcal{G} is a class of $g(n)$-universal amplifiers $\Rightarrow V_{1} \neq \varnothing$

No strong universal amplifiers

Proof sketch (by contradiction).
We can prove that:

- for every $v \in V_{1}$:

$$
\operatorname{deg} v \leq c^{\prime}(r) \cdot n^{\delta}
$$

No strong universal amplifiers

Proof sketch (by contradiction).

We can prove that:

- for every $v \in V_{1}$:
- for every $u \in N(v), v \in V_{1}$:
$\operatorname{deg} v \leq c^{\prime}(r) \cdot n^{\delta}$
$\operatorname{deg} u \geq \frac{1}{c^{\prime}(r)} \cdot n^{1-\delta}$

No strong universal amplifiers

Proof sketch (by contradiction).

We can prove that:

- for every $v \in V_{1}$:
- for every $u \in N(v), v \in V_{1}$:
- for every $v \in V_{2}$:

$$
\operatorname{deg} v \leq c^{\prime}(r) \cdot n^{\delta}
$$

$$
\operatorname{deg} u \geq \frac{1}{c^{\prime}(r)} \cdot n^{1-\delta}
$$

$$
\operatorname{deg} v \leq c^{\prime \prime}(r) \cdot n^{2 \delta}
$$

No strong universal amplifiers

Proof sketch (by contradiction).

We can prove that:

- for every $v \in V_{1}$:
- for every $u \in N(v), v \in V_{1}$:
- for every $v \in V_{2}$:
- for every $u \in N(v), v \in V_{2}$:
$\operatorname{deg} v \leq c^{\prime}(r) \cdot n^{\delta}$
$\operatorname{deg} u \geq \frac{1}{c^{\prime}(r)} \cdot n^{1-\delta}$
$\operatorname{deg} v \leq c^{\prime \prime}(r) \cdot n^{2 \delta}$
$\operatorname{deg} u \geq \frac{1}{c^{\prime \prime}(r)} \cdot n^{1-2 \delta}$

No strong universal amplifiers

Proof sketch (by contradiction).

We can prove that:

- for every $v \in V_{1}$:
- for every $u \in N(v), v \in V_{1}$:
- for every $v \in V_{2}$:
- for every $u \in N(v), v \in V_{2}$:
$\operatorname{deg} v \leq c^{\prime}(r) \cdot n^{\delta}$
$\operatorname{deg} u \geq \frac{1}{c^{\prime}(r)} \cdot n^{1-\delta}$
$\operatorname{deg} v \leq c^{\prime \prime}(r) \cdot n^{2 \delta}$
$\operatorname{deg} u \geq \frac{1}{c^{\prime \prime}(r)} \cdot n^{1-2 \delta}$

Therefore:

- Since $\delta<\frac{1}{4} \Rightarrow 1-\delta>1-2 \delta>2 \delta>\delta$
\Rightarrow every neighbor of a vertex $v \in V_{1} \cup V_{2}$ must belong to V_{3}
$\Rightarrow V_{1} \cup V_{2}$ is an independent set

No strong universal amplifiers

Proof sketch (by contradiction).

Using an upper bound from [Mertzios, Nikoletseas, Raptopoulos, Spirakis, Theor. Comp. Sci., 2013], it follows:

- $\Omega\left(n^{-3 \delta}\right) \leq \frac{c^{\prime \prime \prime}(r)}{n^{1-\delta}}$, for some function $c^{\prime \prime \prime}(r)$,
- contradiction since $\delta<\frac{1}{4}$

Strong selective amplifiers

- For every $n \geq 1$, we define the "urchin" graph G_{n} with $2 n$ vertices:
- a clique with n vertices
- an independent set with n vertices (called "noses")
- a perfect matching between them

Strong selective amplifiers

- For every $n \geq 1$, we define the "urchin" graph G_{n} with $2 n$ vertices:
- a clique with n vertices
- an independent set with n vertices (called "noses")
- a perfect matching between them

Our result:

Theorem

For every $r>5$, the fixation probability of a nose v of G_{n} is $f_{r}(v) \geq 1-\frac{c(r)}{n}$, where $c(r)$ is a function depending only on r.

Strong selective amplifiers

- Consider a state with $k \in\{0,1, \ldots, n\}$ infected noses

Strong selective amplifiers

- Consider a state with $k \in\{0,1, \ldots, n\}$ infected noses
- The infected clique vertices can be allocated as follows:
$Q_{i, x}^{k}$: among the neighbors of the infected noses, x are not infected among the neighbors of the non-infected noses, i are infected

$(0 \leq i \leq n-k)$
$(0 \leq x \leq k)$

Strong selective amplifiers

- Consider a state with $k \in\{0,1, \ldots, n\}$ infected noses
- The infected clique vertices can be allocated as follows:
$Q_{i, x}^{k}$: among the neighbors of the infected noses, x are not infected among the neighbors of the non-infected noses, i are infected
$P_{i}^{k}: \quad i$ clique vertices are infected, as many of them as possible are neighbors of infected noses

$(0 \leq i \leq n-k)$
($0 \leq x \leq k$)

$(i \leq k)$

Strong selective amplifiers

- Consider a state with $k \in\{0,1, \ldots, n\}$ infected noses
- The infected clique vertices can be allocated as follows:
$Q_{i, x}^{k}$: among the neighbors of the infected noses, x are not infected among the neighbors of the non-infected noses, i are infected
$P_{i}^{k}: \quad i$ clique vertices are infected, as many of them as possible are neighbors of infected noses

$(i>k)$

Strong selective amplifiers

- If $i=0 \Rightarrow Q_{0, x}^{k}=P_{k-x}^{k}$

Strong selective amplifiers

- If $i=0 \Rightarrow Q_{0, x}^{k}=P_{k-x}^{k}$
- If $x=0 \Rightarrow Q_{i, 0}^{k}=P_{k+i}^{k}$

Strong selective amplifiers

- If $i=0 \Rightarrow Q_{0, x}^{k}=P_{k-x}^{k}$
- If $x=0 \Rightarrow Q_{i, 0}^{k}=P_{k+i}^{k}$

For any i and x, denote by $q_{i, x}^{k}$ (resp. p_{i}^{k}) the probability that:

- starting at state $Q_{i, x}^{k}\left(\right.$ resp. $\left.P_{i}^{k}\right)$,
- we arrive to a state with $k+1$ infected noses
- before arriving to a state with $k-1$ infected noses

Strong selective amplifiers

- If $i=0 \Rightarrow Q_{0, x}^{k}=P_{k-x}^{k}$
- If $x=0 \Rightarrow Q_{i, 0}^{k}=P_{k+i}^{k}$

For any i and x, denote by $q_{i, x}^{k}\left(\right.$ resp. $\left.p_{i}^{k}\right)$ the probability that:

- starting at state $Q_{i, x}^{k}$ (resp. P_{i}^{k}),
- we arrive to a state with $k+1$ infected noses
- before arriving to a state with $k-1$ infected noses

Lemma

For all appropriate values of $k, i, x: q_{i, x}^{k}>p_{k+i-x}^{k}$.

Strong selective amplifiers

- If $i=0 \Rightarrow Q_{0, x}^{k}=P_{k-x}^{k}$
- If $x=0 \Rightarrow Q_{i, 0}^{k}=P_{k+i}^{k}$

For any i and x, denote by $q_{i, x}^{k}\left(\right.$ resp. $\left.p_{i}^{k}\right)$ the probability that:

- starting at state $Q_{i, x}^{k}\left(\right.$ resp. $\left.P_{i}^{k}\right)$,
- we arrive to a state with $k+1$ infected noses
- before arriving to a state with $k-1$ infected noses

Lemma

For all appropriate values of $k, i, x: q_{i, x}^{k}>p_{k+i-x}^{k}$.
\Rightarrow to compute a lower bound on the fixation probability $f_{r}(v)$ of a nose v :

- whenever we have k infected noses and i infected clique vertices,
- we assume that we are at state P_{i}^{k}
- denote this relaxed Markov chain by \mathcal{M}

Strong selective amplifiers

- We compute a lower bound for the fixation probability of state P_{0}^{1}

Strong selective amplifiers

- We compute a lower bound for the fixation probability of state P_{0}^{1}
- To analyze the Markov chain \mathcal{M} :
- we decompose \mathcal{M} into $n-1$ Markov chains $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{n-1}$
- \mathcal{M}_{k} captures transitions of \mathcal{M} between states with k infected noses

Strong selective amplifiers

- We compute a lower bound for the fixation probability of state P_{0}^{1}
- To analyze the Markov chain \mathcal{M} :
- we decompose \mathcal{M} into $n-1$ Markov chains $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{n-1}$
- \mathcal{M}_{k} captures transitions of \mathcal{M} between states with k infected noses
- \mathcal{M}_{k} has two absorbing states:
- F_{k+1} (arbitrary state with $k+1$ infected noses) \Rightarrow switch to \mathcal{M}_{k+1}
- F_{k-1} (arbitrary state with $k-1$ infected noses) \Rightarrow switch to \mathcal{M}_{k-1}

Strong selective amplifiers

- We compute a lower bound for the fixation probability of state P_{0}^{1}
- To analyze the Markov chain \mathcal{M} :
- we decompose \mathcal{M} into $n-1$ Markov chains $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{n-1}$
- \mathcal{M}_{k} captures transitions of \mathcal{M} between states with k infected noses
- \mathcal{M}_{k} has two absorbing states:
- F_{k+1} (arbitrary state with $k+1$ infected noses) \Rightarrow switch to \mathcal{M}_{k+1}
- F_{k-1} (arbitrary state with $k-1$ infected noses) \Rightarrow switch to \mathcal{M}_{k-1}

Strong selective amplifiers

Since we need to compute a lower bound of the fixation probability:

- whenever we arrive at state F_{k+1} or state F_{k-1},
- we assume that we have the smallest umber of infected clique vertices

Therefore:

- $F_{k-1}=P_{0}^{k-1}$ (no infected clique noses)

Strong selective amplifiers

Since we need to compute a lower bound of the fixation probability:

- whenever we arrive at state F_{k+1} or state F_{k-1},
- we assume that we have the smallest umber of infected clique vertices

Therefore:

- $F_{k-1}=P_{0}^{k-1}$ (no infected clique noses)
- $F_{k+1}=P_{k+1}^{k+1}$
(we need at least $k+1$ infected clique vertices to infect another nose)

Strong selective amplifiers

Since we need to compute a lower bound of the fixation probability:

- whenever we arrive at state F_{k+1} or state F_{k-1},
- we assume that we have the smallest umber of infected clique vertices

Therefore:

- $F_{k-1}=P_{0}^{k-1}$ (no infected clique noses)
- $F_{k+1}=P_{k+1}^{k+1}$
(we need at least $k+1$ infected clique vertices to infect another nose)

Strong selective amplifiers

To analyze the Markov chains $\mathcal{M}_{k}, k=1,2, \ldots, n-1$:

- we decompose every \mathcal{M}_{k} into two Markov chains \mathcal{M}_{k}^{1} and \mathcal{M}_{k}^{2}

Strong selective amplifiers

To analyze the Markov chains $\mathcal{M}_{k}, k=1,2, \ldots, n-1$:

- we decompose every \mathcal{M}_{k} into two Markov chains \mathcal{M}_{k}^{1} and \mathcal{M}_{k}^{2}

Strong selective amplifiers

To analyze the Markov chains $\mathcal{M}_{k}, k=1,2, \ldots, n-1$:

- we decompose every \mathcal{M}_{k} into two Markov chains \mathcal{M}_{k}^{1} and \mathcal{M}_{k}^{2}

Strong selective amplifiers

Using this decomposition of the chain \mathcal{M} into the chains $\left\{\mathcal{M}_{k}^{1}, \mathcal{M}_{k}^{2}\right\}_{k=1}^{n-1}$:

Strong selective amplifiers

Using this decomposition of the chain \mathcal{M} into the chains $\left\{\mathcal{M}_{k}^{1}, \mathcal{M}_{k}^{2}\right\}_{k=1}^{n-1}$:

transitions from P_{0}^{k} : through the Markov chain \mathcal{M}_{1}

Strong selective amplifiers

Using this decomposition of the chain \mathcal{M} into the chains $\left\{\mathcal{M}_{k}^{1}, \mathcal{M}_{k}^{2}\right\}_{k=1}^{n-1}$:

transitions from P_{0}^{k} : through the Markov chain \mathcal{M}_{1} transitions from P_{k}^{k} : through the Markov chain \mathcal{M}_{2}

Strong selective amplifiers

Using this decomposition of the chain \mathcal{M} into the chains $\left\{\mathcal{M}_{k}^{1}, \mathcal{M}_{k}^{2}\right\}_{k=1}^{n-1}$:

Relax \mathcal{M} further: the infected vertices at P_{0}^{k} are a subset of those at P_{k}^{k}

Strong selective amplifiers

Using this decomposition of the chain \mathcal{M} into the chains $\left\{\mathcal{M}_{k}^{1}, \mathcal{M}_{k}^{2}\right\}_{k=1}^{n-1}$:

Relax \mathcal{M} further: the infected vertices at P_{0}^{k} are a subset of those at P_{k}^{k}

Eliminate from \mathcal{M}^{\prime} the states $P_{k}^{k} \Rightarrow$ a birth-death process \mathcal{B}

Strong selective amplifiers

In the birth-death process \mathcal{B} :

- we can compute a lower bound for the probability that, starting at P_{0}^{1}, we arrive at P_{n}^{n} before arriving at P_{0}^{0}

Strong selective amplifiers

In the birth-death process \mathcal{B} :

- we can compute a lower bound for the probability that, starting at P_{0}^{1}, we arrive at P_{n}^{n} before arriving at P_{0}^{0}
- this provides a lower bound for the fixation probability of P_{0}^{1} in the original chain \mathcal{M}

Strong selective amplifiers

In the birth-death process \mathcal{B} :

- we can compute a lower bound for the probability that, starting at P_{0}^{1}, we arrive at P_{n}^{n} before arriving at P_{0}^{0}
- this provides a lower bound for the fixation probability of P_{0}^{1} in the original chain \mathcal{M}
$\mathcal{B}:$

Using these decompositions, we prove that:

Theorem

For every $r>5$, the fixation probability of a nose v of G_{n} is $f_{r}(v) \geq 1-\frac{c(r)}{n}$, where $c(r)$ is a function depending only on r.
\Rightarrow urchin graphs are $\left(\frac{n}{2}, n\right)$-amplifiers

The Thermal Theorem

Theorem (Thermal Theorem)

Let $G=(V, E)$ be a connected undirected graph and $r>1$.

The Thermal Theorem

```
Theorem (Thermal Theorem)
Let G=(V,E) be a connected undirected graph and r>1.
```


Main idea for the proof:

- define a system L_{0} of (exponentially many) linear equations (one variable for every vertex subset S)
- the solutions of L_{0} provide a lower bound for the fixation probabilities of these sets S

The Thermal Theorem

Theorem (Thermal Theorem)

Let $G=(V, E)$ be a connected undirected graph and $r>1$.
Then $f_{r}(v) \geq \frac{r-1}{r+\frac{\operatorname{deg} v}{\operatorname{deg}_{\text {min }}}}$ for every $v \in V$.

Main idea for the proof:

- define a system L_{0} of (exponentially many) linear equations (one variable for every vertex subset S)
- the solutions of L_{0} provide a lower bound for the fixation probabilities of these sets S
- construct from L_{0} a Markov chain \mathcal{M}_{0}
- modify \mathcal{M}_{0} into the chain \mathcal{M}_{0}^{*}

The Thermal Theorem

Theorem (Thermal Theorem)

Let $G=(V, E)$ be a connected undirected graph and $r>1$.
Then $f_{r}(v) \geq \frac{r-1}{r+\frac{\operatorname{deg} v}{\operatorname{deg}_{\text {min }}}}$ for every $v \in V$.

Main idea for the proof:

- define a system L_{0} of (exponentially many) linear equations (one variable for every vertex subset S)
- the solutions of L_{0} provide a lower bound for the fixation probabilities of these sets S
- construct from L_{0} a Markov chain \mathcal{M}_{0}
- modify \mathcal{M}_{0} into the chain \mathcal{M}_{0}^{*}
- for every $i=1,2, \ldots, n-1$: $\operatorname{relax} \mathcal{M}_{i-1}^{*}$ into the chain \mathcal{M}_{i}^{*}
- \mathcal{M}_{n-1}^{*} provides the desired lower bound

The Thermal Theorem

For every vertex subset $S \subseteq V$:

- the fixation probability $f_{r}(S)$ of S is computed by:

$$
f_{r}(S)=\frac{\sum_{x y \in E, x \in S, y \notin S}\left(r \frac{1}{\operatorname{deg} x} f_{r}(S+y)+\frac{1}{\operatorname{deg} y} f_{r}(S-x)\right)}{\sum_{x y \in E, x \in S, y \notin S}\left(\frac{r}{\operatorname{deg} x}+\frac{1}{\operatorname{deg} y}\right)}
$$

where $f_{r}(\varnothing)=0$ and $f_{r}(V)=1$ (boundary conditions)

The Thermal Theorem

For every vertex subset $S \subseteq V$:

- the fixation probability $f_{r}(S)$ of S is computed by:

$$
f_{r}(S)=\frac{\sum_{x y \in E, x \in S, y \notin S}\left(r \frac{1}{\operatorname{deg} x} f_{r}(S+y)+\frac{1}{\operatorname{deg} y} f_{r}(S-x)\right)}{\sum_{x y \in E, x \in S, y \notin S}\left(\frac{r}{\operatorname{deg} x}+\frac{1}{\operatorname{deg} y}\right)}
$$

where $f_{r}(\varnothing)=0$ and $f_{r}(V)=1$ (boundary conditions)
For every such edge $x y \in E$ (where $x \in S$ and $y \notin S$):

- x "infects" y with probability proportional to $\frac{1}{\operatorname{deg} x}$
- y "disinfects" x with probability proportional to $\frac{1}{\operatorname{deg} y}$

The Thermal Theorem

For every vertex subset $S \subseteq V$:

- the fixation probability $f_{r}(S)$ of S is computed by:

$$
f_{r}(S)=\frac{\sum_{x y \in E, x \in S, y \notin S}\left(r \frac{1}{\operatorname{deg} x} f_{r}(S+y)+\frac{1}{\operatorname{deg} y} f_{r}(S-x)\right)}{\sum_{x y \in E, x \in S, y \notin S}\left(\frac{r}{\operatorname{deg} x}+\frac{1}{\operatorname{deg} y}\right)}
$$

where $f_{r}(\varnothing)=0$ and $f_{r}(V)=1$ (boundary conditions)
For every such edge $x y \in E$ (where $x \in S$ and $y \notin S$):

- x "infects" y with probability proportional to $\frac{1}{\operatorname{deg} x}$
- y "disinfects" x with probability proportional to $\frac{1}{\operatorname{deg} y}$
\Rightarrow for every vertex $v \in V$:
- we define $\frac{1}{\operatorname{deg} v}$ as the temperature of v
- a "hot" vertex affects more often its neighbors than a "cold" vertex

The Thermal Theorem

For every vertex subset $S \subseteq V$:

- the fixation probability $f_{r}(S)$ of S is computed by:

$$
f_{r}(S)=\frac{\sum_{x y \in E, x \in S, y \notin S}\left(r \frac{1}{\operatorname{deg} x} f_{r}(S+y)+\frac{1}{\operatorname{deg} y} f_{r}(S-x)\right)}{\sum_{x y \in E, x \in S, y \notin S}\left(\frac{r}{\operatorname{deg} x}+\frac{1}{\operatorname{deg} y}\right)}
$$

where $f_{r}(\varnothing)=0$ and $f_{r}(V)=1$ (boundary conditions)
Furthermore:

- for every set $S \notin\{\varnothing, V\}$ there exists a vertex $x(S) \in S$ and a vertex $y(S) \notin S$ such that $x(S) y(S) \in E$ and:

$$
f_{r}(S) \geq \frac{\left(r \frac{1}{\operatorname{deg} x(S)} f_{r}(S+y(S))+\frac{1}{\operatorname{deg} y(S)} f_{r}(S-x(S))\right)}{\left(\frac{r}{\operatorname{deg} x(S)}+\frac{1}{\operatorname{deg} y(S)}\right)}
$$

The Thermal Theorem

Therefore:

- by replacing all " \geq " with " $=$ ", we obtain a lower bound for all $f_{r}(S)$
- for every set $S \notin\{\varnothing, V\}$ there exists a vertex $x(S) \in S$ and a vertex $y(S) \notin S$ such that $x(S) y(S) \in E$ and:

$$
f_{r}(S) \geq \frac{\left(r \frac{1}{\operatorname{deg} x(S)} f_{r}(S+y(S))+\frac{1}{\operatorname{deg} y(S)} f_{r}(S-x(S))\right)}{\left(\frac{r}{\operatorname{deg} x(S)}+\frac{1}{\operatorname{deg} y(S)}\right)}
$$

The Thermal Theorem

Definition (the linear system L_{0})

Let $G=(V, E)$ be a graph and $r>1$. Every vertex $v \in V$ has a weight (temperature) $d_{v}>0$. The linear system L_{0} on the variables $p_{r}(S)$, where $\varnothing \subset S \subset V$, is:

$$
p_{r}(S)=\frac{r \cdot d_{x(S)} \cdot p_{r}(S+y(S))+d_{y(S)} \cdot p_{r}(S-x(S))}{r \cdot d_{x(S)}+d_{y(S)}}
$$

with boundary conditions $p_{r}(\varnothing)=0$ and $p_{r}(V)=1$.

The Thermal Theorem

Definition (the linear system L_{0})

Let $G=(V, E)$ be a graph and $r>1$. Every vertex $v \in V$ has a weight (temperature) $d_{v}>0$. The linear system L_{0} on the variables $p_{r}(S)$, where $\varnothing \subset S \subset V$, is:

$$
p_{r}(S)=\frac{r \cdot d_{x(S)} \cdot p_{r}(S+y(S))+d_{y(S)} \cdot p_{r}(S-x(S))}{r \cdot d_{x(S)}+d_{y(S)}}
$$

with boundary conditions $p_{r}(\varnothing)=0$ and $p_{r}(V)=1$.
The system L_{0} defines naturally the Markov chain \mathcal{M}_{0} :

- one state for every vertex subset $S \subseteq V$
- states \varnothing and V are absorbing
- every non-absorbing state S has exactly two transitions to the states $S+y(S)$ and $S-x(S)$, with transition probabilities
$q_{S}=\frac{r d_{X(S)}}{r d_{x(S)}+d_{y(S)}}$ and $1-q_{S}$, respectively

The Thermal Theorem

Definition (the linear system L_{0})

Let $G=(V, E)$ be a graph and $r>1$. Every vertex $v \in V$ has a weight (temperature) $d_{v}>0$. The linear system L_{0} on the variables $p_{r}(S)$, where $\varnothing \subset S \subset V$, is:

$$
p_{r}(S)=\frac{r \cdot d_{x(S)} \cdot p_{r}(S+y(S))+d_{y(S)} \cdot p_{r}(S-x(S))}{r \cdot d_{x(S)}+d_{y(S)}}
$$

with boundary conditions $p_{r}(\varnothing)=0$ and $p_{r}(V)=1$.

Observation

By setting $d_{v}=\frac{1}{\operatorname{deg} v}$ for every $v \in V$, it follows that $f_{r}(S) \geq p_{r}(S)$ for every set $S \subseteq V$.

The Thermal Theorem

We construct now the chain \mathcal{M}_{0}^{*} from the chain \mathcal{M}_{0} as follows:

- for every set S in \mathcal{M}_{0} :

The Thermal Theorem

We construct now the chain \mathcal{M}_{0}^{*} from the chain \mathcal{M}_{0} as follows:

- for every set S in \mathcal{M}_{0} :

- we add a new dummy state X_{S} :

The Thermal Theorem

We construct now the chain \mathcal{M}_{0}^{*} from the chain \mathcal{M}_{0} as follows:

- for every set S in \mathcal{M}_{0} :

- we add a new dummy state X_{S} :

\Rightarrow All values of $p_{r}(S)$ in \mathcal{M}_{0}^{*} remain the same as in \mathcal{M}_{0}

The Thermal Theorem

- Consider an arbitrary numbering $v_{0}, v_{1}, \ldots, v_{n-1}$ of the vertices of G
- For every $i=1,2, \ldots, n-1$, construct from \mathcal{M}_{i-1}^{*} the chain \mathcal{M}_{i}^{*} as follows:
(1) for all sets $S \subset V$ with $y(S)=v_{i}$, change the transitions from X_{S} :

The Thermal Theorem

- Consider an arbitrary numbering $v_{0}, v_{1}, \ldots, v_{n-1}$ of the vertices of G
- For every $i=1,2, \ldots, n-1$, construct from \mathcal{M}_{i-1}^{*} the chain \mathcal{M}_{i}^{*} as follows:
(1) for all sets $S \subset V$ with $y(S)=v_{i}$, change the transitions from X_{S} :

\Rightarrow the values of $p_{r}(S)$ do not decrease in \mathcal{M}_{i}^{*}

The Thermal Theorem

- Consider an arbitrary numbering $v_{0}, v_{1}, \ldots, v_{n-1}$ of the vertices of G
- For every $i=1,2, \ldots, n-1$, construct from \mathcal{M}_{i-1}^{*} the chain \mathcal{M}_{i}^{*} as follows:
(1) for all sets $S \subset V$ with $y(S)=v_{i}$, change the transitions from X_{S} :

(2) for all these sets S, eliminate the dummy state X_{S}
\Rightarrow the values of $p_{r}(S)$ do not decrease in \mathcal{M}_{i}^{*}

The Thermal Theorem

- Consider an arbitrary numbering $v_{0}, v_{1}, \ldots, v_{n-1}$ of the vertices of G
- For every $i=1,2, \ldots, n-1$, construct from \mathcal{M}_{i-1}^{*} the chain \mathcal{M}_{i}^{*} as follows:
(1) for all sets $S \subset V$ with $y(S)=v_{i}$, change the transitions from X_{S} :

(2) for all these sets S, eliminate the dummy state X_{S}
\Rightarrow the values of $p_{r}(S)$ do not decrease in \mathcal{M}_{i}^{*}

Lemma

For all these states S, the forward probability of S in \mathcal{M}_{i}^{*} is a monotone decreasing function of the temperature $d_{v_{i}}$ of v_{i}.

The Thermal Theorem

- We increase the temperature $d_{v_{i}}$ in \mathcal{M}_{i}^{*} to $d_{\max }$
\Rightarrow the values of $p_{r}(S)$ do not increase

The Thermal Theorem

- We increase the temperature $d_{v_{i}}$ in \mathcal{M}_{i}^{*} to $d_{\max }$
\Rightarrow the values of $p_{r}(S)$ do not increase
At the end, in the chain \mathcal{M}_{n-1}^{*} :
- $d_{v_{1}}=d_{V_{2}}=\ldots=d_{v_{n-1}}=d_{\max }=\frac{1}{\operatorname{deg}_{\text {min }}}$
- $d_{v_{0}}=\frac{1}{\operatorname{deg}_{v_{0}}}$
- for every set S, the values of $p_{r}(S)$ are not larger than in \mathcal{M}_{0}^{*}

The Thermal Theorem

- We increase the temperature $d_{v_{i}}$ in \mathcal{M}_{i}^{*} to $d_{\max }$
\Rightarrow the values of $p_{r}(S)$ do not increase
At the end, in the chain \mathcal{M}_{n-1}^{*} :
- $d_{v_{1}}=d_{v_{2}}=\ldots=d_{v_{n-1}}=d_{\max }=\frac{1}{\operatorname{deg}_{\text {min }}}$
- $d_{v_{0}}=\frac{1}{\operatorname{deg}_{v_{0}}}$
- for every set S, the values of $p_{r}(S)$ are not larger than in \mathcal{M}_{0}^{*}
- We use techniques similar to the Isothermal Theorem in [Lieberman et al., Nature, 2005] to prove that:

$$
f_{r}\left(v_{0}\right) \geq \frac{(r-1)}{r+\frac{d_{\max }}{d_{v_{0}}}}=\frac{(r-1)}{r+\frac{\operatorname{deg} v_{0}}{\operatorname{deg} \mathrm{~m}_{\text {min }}}}
$$

- v_{0} is chosen arbitrarily \Rightarrow the Thermal Theorem

Summary and open problems

- Evolutionary graph theory studies how network (graph) topology influences evolution between interacting individuals.

Summary and open problems

- Evolutionary graph theory studies how network (graph) topology influences evolution between interacting individuals.
- We refined the notion of fixation probability to specific vertices v

Summary and open problems

- Evolutionary graph theory studies how network (graph) topology influences evolution between interacting individuals.
- We refined the notion of fixation probability to specific vertices v
- We proved:
- there exist no strong universal amplifiers
- there exist strong selective amplifiers
- there exist "quite" strong selective suppressors
- the Thermal Theorem (lower bound)

Summary and open problems

- Do there exist stronger suppressors / amplifiers of selection?
- the fixation probability of the strongest known amplifiers of natural selection is $1-\frac{1}{r^{2}}$ ("star")
- the fixation probability of the strongest known suppressors of natural selection is $\frac{1}{2}\left(1-\frac{1}{r}\right)$ ("clique-wheels")

Summary and open problems

- Do there exist stronger suppressors / amplifiers of selection?
- the fixation probability of the strongest known amplifiers of natural selection is $1-\frac{1}{r^{2}}$ ("star")
- the fixation probability of the strongest known suppressors of natural selection is $\frac{1}{2}\left(1-\frac{1}{r}\right)$ ("clique-wheels")
- Is the fixation probability of all undirected graphs upper/lower bounded by a function $c(r)$ of the fitness r ?

Summary and open problems

- Do there exist stronger suppressors / amplifiers of selection?
- the fixation probability of the strongest known amplifiers of natural selection is $1-\frac{1}{r^{2}}$ ("star")
- the fixation probability of the strongest known suppressors of natural selection is $\frac{1}{2}\left(1-\frac{1}{r}\right)$ ("clique-wheels")
- Is the fixation probability of all undirected graphs upper/lower bounded by a function $c(r)$ of the fitness r ?
- More types of mutants (many colors)?

Thank you for your attention!

