Strong Bounds for Evolution in Networks

Paul G. Spirakis^{1,2}

ESRC workshop on Algorithmic Game Theory Department of Mathematics, London School of Economics

These results have been presented in:

- Theor. Comp. Science 2013: Natural Models for Evolution on Networks, by G. Mertzios³, S. Nikoletseas¹, C. Raptopoulos¹, and P. Spirakis^{1,2}
- SODA 2012; Algorithmica: Approximating Fixation Probabilities in the Generalized Moran Process,
 by J. Díaz⁴, L.A. Goldberg⁵, G. Mertzios³, D. Richerby⁵, M. Serna⁴, and P. Spirakis^{1,2}
- ICALP 2013: Strong Bounds for Evolution in Undirected Graphs, by *G. Mertzios*³ and *P. Spirakis*^{1,2}

¹CTI & University of Patras, Greece, ²University of Liverpool, UK, ³Durham University, UK, ⁴Universitat Politécnica de Catalunya, Spain, ⁵University of Oxford, UK

- Evolution in biology / Population dynamics have been mainly traditionally in homogeneous populations
- However, in reality, the topology / structure of the population can strongly affect the output of the dynamics.
- Evolutionary graph theory has been introduced in [Lieberman, Hauert, Nowak, *Nature*, 2005]
- Main idea: arrange the population on a network (i.e. graph)
- There are two types of vertices:
 - aggressive ("mutants") \longleftrightarrow fitness $r \ge 1$,
 - non-aggressive ("residents") \longleftrightarrow fitness 1.

- Evolution in biology / Population dynamics have been mainly traditionally in homogeneous populations
- However, in reality, the topology / structure of the population can strongly affect the output of the dynamics.
- Evolutionary graph theory has been introduced in [Lieberman, Hauert, Nowak, *Nature*, 2005]
- Main idea: arrange the population on a network (i.e. graph)
- There are two types of vertices:
 - aggressive ("mutants") \leftrightarrow fitness $r \ge 1$,
 - non-aggressive ("residents") \longleftrightarrow fitness 1.
- Time is discrete $t = 1, 2, \ldots$
- At every iteration $t \geq 1$,
 - choose a vertex *u* with probability proportional to its fitness;
 - choose randomly a neighbor $v \in N(u)$ (resp. an arc $\langle uv \rangle$);
 - replace v by an offspring of u.

The main model in [Lieberman, Hauert, Nowak, *Nature*, 2005]: (the "generalized Moran process")

• This random process defines a discrete (transient) Markov chain, with two absorbing (i.e. stable) states:

- This random process defines a discrete (transient) Markov chain, with two absorbing (i.e. stable) states:
 - all vertices black (fixation of the black mutants),

- This random process defines a discrete (transient) Markov chain, with two absorbing (i.e. stable) states:
 - all vertices black (fixation of the black mutants),
 - all vertices white (extinction of the black mutants).

- This random process defines a discrete (transient) Markov chain, with two absorbing (i.e. stable) states:
 - all vertices black (fixation of the black mutants),
 - all vertices white (extinction of the black mutants).
- The state space is the set of all vertex subsets of the graph, i.e. exponentially many.

The main model in [Lieberman, Hauert, Nowak, *Nature*, 2005]: (the "generalized Moran process")

- This random process defines a discrete (transient) Markov chain, with two absorbing (i.e. stable) states:
 - all vertices black (fixation of the black mutants),
 - all vertices white (extinction of the black mutants).
- The state space is the set of all vertex subsets of the graph, i.e. exponentially many.

Definition (Lieberman et al., *Nature*, 2005)

Let G = (V, E) be a graph and $v \in V$ be a randomly chosen vertex of G. The fixation probability $f_r(G)$ of G is the probability that a mutant with fitness r placed at v eventually takes over the whole graph G.

- When the graph G is directed, extreme phenomena can occur:
 - fixation with probability $f_r(G) = \frac{1}{n} \approx 0$ (one "source"),

- When the graph G is directed, extreme phenomena can occur:
 - fixation with probability $f_r(G) = \frac{1}{n} \approx 0$ (one "source"),
 - neither fixation nor extinction (two or more "sources"),

- When the graph G is directed, extreme phenomena can occur:
 - fixation with probability $f_r(G) = \frac{1}{n} \approx 0$ (one "source"),
 - neither fixation nor extinction (two or more "sources"),
 - fixation with probability $f_r(G) \approx 1$ [Lieberman et al., *Nature*, 2005] (for a more exact analysis: [Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, *Royal Soc. A*, 2013])

- When the graph G is directed, extreme phenomena can occur:
 - fixation with probability $f_r(G) = \frac{1}{n} \approx 0$ (one "source"),
 - neither fixation nor extinction (two or more "sources"),
 - fixation with probability $f_r(G) \approx 1$ [Lieberman et al., *Nature*, 2005] (for a more exact analysis: [Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, *Royal Soc. A*, 2013])
- In contrast, undirected graphs:
 - have a smoother behavior

(they reach fixation or extinction with probability 1),

- When the graph G is directed, extreme phenomena can occur:
 - fixation with probability $f_r(G) = \frac{1}{n} \approx 0$ (one "source"),
 - neither fixation nor extinction (two or more "sources"),
 - fixation with probability $f_r(G) \approx 1$ [Lieberman et al., *Nature*, 2005] (for a more exact analysis: [Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, *Royal Soc. A*, 2013])
- In contrast, undirected graphs:
 - have a smoother behavior (they reach fixation or extinction with probability 1),
 - it seems more difficult to find graphs with large / small fixation probability,

- When the graph G is directed, extreme phenomena can occur:
 - fixation with probability $f_r(G) = \frac{1}{n} \approx 0$ (one "source"),
 - neither fixation nor extinction (two or more "sources"),
 - fixation with probability $f_r(G) \approx 1$ [Lieberman et al., *Nature*, 2005] (for a more exact analysis: [Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, *Royal Soc. A*, 2013])
- In contrast, undirected graphs:
 - have a smoother behavior (they reach fixation or extinction with probability 1),
 - it seems more difficult to find graphs with large / small fixation probability,
 - they appear more naturally in applications u influences $v \Rightarrow v$ influences u.

- When the graph G is directed, extreme phenomena can occur:
 - fixation with probability $f_r(G) = \frac{1}{n} \approx 0$ (one "source"),
 - neither fixation nor extinction (two or more "sources"),
 - fixation with probability $f_r(G) \approx 1$ [Lieberman et al., *Nature*, 2005] (for a more exact analysis: [Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, *Royal Soc. A*, 2013])
- In contrast, undirected graphs:
 - have a smoother behavior (they reach fixation or extinction with probability 1),
 - it seems more difficult to find graphs with large / small fixation probability,
 - they appear more naturally in applications u influences $v \Rightarrow v$ influences u.

 \Rightarrow We are mainly interested in undirected graphs.

Theorem (Isothermal Theorem, Lieberman et al., Nature, 2005)

Let G = (V, E) be an undirected and regular graph (i.e. $\deg(u) = \deg(v)$ for every $u, v \in V$). If r > 1, then $f_r(G) = \frac{1 - \frac{1}{r}}{1 - \frac{1}{r^n}} \approx 1 - \frac{1}{r}$.

Theorem (Isothermal Theorem, Lieberman et al., *Nature*, 2005) Let G = (V, E) be an undirected and regular graph (i.e. $\deg(u) = \deg(v)$ for every $u, v \in V$). If r > 1, then $f_r(G) = \frac{1 - \frac{1}{r}}{1 - \frac{1}{r^n}} \approx 1 - \frac{1}{r}$.

- The complete graph acts as a "benchmark"
- A graph G is called:
 - an amplifier if $f_r(G) > \frac{1-\frac{1}{r}}{1-\frac{1}{r}}$, and
 - an suppressor if $f_r(G) < \frac{1-\frac{1}{r}}{1-\frac{1}{r^n}}$.

Theorem (Isothermal Theorem, Lieberman et al., *Nature*, 2005) Let G = (V, E) be an undirected and regular graph (i.e. $\deg(u) = \deg(v)$ for every $u, v \in V$). If r > 1, then $f_r(G) = \frac{1 - \frac{1}{r}}{1 - \frac{1}{r^n}} \approx 1 - \frac{1}{r}$.

- The complete graph acts as a "benchmark"
- A graph G is called:
 - an amplifier if $f_r(G) > \frac{1-\frac{1}{r}}{1-\frac{1}{r}}$, and
 - an suppressor if $f_r(G) < \frac{1-\frac{1}{r}}{1-\frac{1}{r^n}}$.
- **Question 1:** Do there exist strong undirected amplifiers / suppressors of selection?

Theorem (Isothermal Theorem, Lieberman et al., *Nature*, 2005) Let G = (V, E) be an undirected and regular graph (i.e. $\deg(u) = \deg(v)$ for every $u, v \in V$). If r > 1, then $f_r(G) = \frac{1 - \frac{1}{r}}{1 - \frac{1}{r^n}} \approx 1 - \frac{1}{r}$.

- The complete graph acts as a "benchmark"
- A graph G is called:
 - an amplifier if $f_r(G) > \frac{1-\frac{1}{r}}{1-\frac{1}{r}}$, and
 - an suppressor if $f_r(G) < \frac{1-\frac{1}{r}}{1-\frac{1}{r^n}}$.
- **Question 1:** Do there exist strong undirected amplifiers / suppressors of selection?
- **Question 2:** How does the population structure affect the fixation probability?

A class of undirected suppressors of selection

- For every n ≥ 1, we define the "clique-wheel" graph G_n with 2n vertices:
 - clique with *n* vertices
 - induced cycle with *n* vertices
 - perfect matching between them

Theorem (Mertzios, Nikoletseas, Raptopoulos, Spirakis, *TCS*, 2013) For every $r \in (1, \frac{4}{3})$, the fixation probability of G_n is $f_{G_n}(r) \leq \frac{1}{2}(1-\frac{1}{r})$, as $n \to \infty$.

Questions that were open until recently:

- How can we compute the fixation/extinction probability for a given graph?
- Can we do this efficiently?
 - the resulting Markov chain implies a system of linear equations
 - however: exponentially many equations in general one for every vertex subset
- Does the generalized Moran process reach absorption (i.e. fixation or extinction) quickly?

Nothing is known until now, except immediate results for special cases

• e.g. expected linear time for regular graphs

Our results: [Díaz, Goldberg, Mertzios, Richerby, Spirakis, *SODA*, 2012; *Algorithmica*, to appear]

- The generalized Moran process reaches absorption (either fixation or extinction) in polynomial number of steps with high probability.
- Two FPRAS (fully polynomial randomized approximation schemes) for the problems of:
 - computing the fixation probability on general graphs for $r \ge 1$
 - computing the extinction probability on general graphs for r > 0

Our results: [Díaz, Goldberg, Mertzios, Richerby, Spirakis, *SODA*, 2012; *Algorithmica*, to appear]

- The generalized Moran process reaches absorption (either fixation or extinction) in polynomial number of steps with high probability.
- Two FPRAS (fully polynomial randomized approximation schemes) for the problems of:
 - computing the fixation probability on general graphs for $r \ge 1$
 - computing the extinction probability on general graphs for r > 0

Definition

An FPRAS for a function f is a randomized algorithm g that, given input X, gives an output satisfying:

$$(1-\varepsilon)f(X) \le g(X) \le (1+\varepsilon)f(X)$$

with probability at least $\frac{3}{4}$ and has running time polynomial in |X| and $\frac{1}{\epsilon}$.

General approach for the FPRAS:

- simulate (polynomially many) times the generalized Moran process until absorption is reached
- count the number of simulations that reached fixation

General approach for the FPRAS:

- simulate (polynomially many) times the generalized Moran process until absorption is reached
- count the number of simulations that reached fixation

The correctness of the FPRAS is based on two points:

- expected polynomial time until absorption is reached
 - \implies every simulation needs polynomial number of steps
- the fixation probability is polynomially upper/lower bounded (i.e. not too big/small)
 - \implies a polynomial number of simulations suffices to estimate the fixation/absorption probabilities.

So far, the only known general bounds for the fixation probability:

Lemma (Díaz, Goldberg, Mertzios, Richerby, Serna, Spirakis, *SODA*, 2012; *Algorithmica*, to appear)

Let G = (V, E) be an undirected graph with *n* vertices. Then: • $f_r(G) \ge \frac{1}{n}$ for any $r \ge 1$

• $f_r(G) \leq 1 - \frac{1}{n+r}$ for any r > 0

• Tighter upper / lower bounds \Rightarrow better running time of these FPRAS.

10 / 32

- In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:
 - random placement of the initial mutant
- However, some positions are more influential than others

- In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:
 - random placement of the initial mutant
- However, some positions are more influential than others
- We refine the notion of the fixation probability:

Definition

Let G = (V, E) be a graph and $S \subseteq V$. The fixation probability $f_r(S)$ of the set S is the probability that |S| mutants with fitness r placed at the vertices of S eventually take over the whole graph G.

11 / 32

- In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:
 - random placement of the initial mutant
- However, some positions are more influential than others
- We refine the notion of the fixation probability:

Definition

Let G = (V, E) be a graph and $S \subseteq V$. The fixation probability $f_r(S)$ of the set S is the probability that |S| mutants with fitness r placed at the vertices of S eventually take over the whole graph G. If $S = \{v\}$, we write $f_r(S) = f_r(v)$.
Upper / lower bounds

- In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:
 - random placement of the initial mutant
- However, some positions are more influential than others
- We refine the notion of the fixation probability:

Definition

Let G = (V, E) be a graph and $S \subseteq V$. The fixation probability $f_r(S)$ of the set S is the probability that |S| mutants with fitness r placed at the vertices of S eventually take over the whole graph G. If $S = \{v\}$, we write $f_r(S) = f_r(v)$.

 \Rightarrow the fixation probability of the graph G is $f_r(G) = \frac{1}{n} \sum_{v \in V} f_r(v)$

Upper / lower bounds

- In the model of [Lieberman, Hauert, Nowak, Nature, 2005]:
 - random placement of the initial mutant
- However, some positions are more influential than others
- We refine the notion of the fixation probability:

Definition

Let G = (V, E) be a graph and $S \subseteq V$. The fixation probability $f_r(S)$ of the set S is the probability that |S| mutants with fitness r placed at the vertices of S eventually take over the whole graph G. If $S = \{v\}$, we write $f_r(S) = f_r(v)$.

 \Rightarrow the fixation probability of the graph G is $f_r(G) = \frac{1}{n} \sum_{v \in V} f_r(v)$

 We are interested in finding graphs with many strong / weak starts f_r(v) for the mutant

• Can we really reach fixation probabilities $\frac{1}{n}$ and $1 - \frac{1}{n+r}$?

• Can we really reach fixation probabilities $\frac{1}{n}$ and $1 - \frac{1}{n+r}$?

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every $r > r_0$ and every graph $G \in \mathcal{G}$ with $n \ge n_0$ vertices:

• $f_r(G) \ge 1 - \frac{c(r)}{g(n)}$, then \mathcal{G} is a class of g(n)-universal amplifiers,

• Can we really reach fixation probabilities $\frac{1}{n}$ and $1 - \frac{1}{n+r}$?

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every $r > r_0$ and every graph $G \in \mathcal{G}$ with $n \ge n_0$ vertices:

- $f_r(G) \ge 1 \frac{c(r)}{g(n)}$, then \mathcal{G} is a class of g(n)-universal amplifiers,
- $f_r(v) \ge 1 \frac{c(r)}{g(n)}$ for at least h(n) vertices v,

then \mathcal{G} is a class of (h(n), g(n))-selective amplifiers.

• Can we really reach fixation probabilities $\frac{1}{n}$ and $1 - \frac{1}{n+r}$?

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every $r > r_0$ and every graph $G \in \mathcal{G}$ with $n \ge n_0$ vertices:

- $f_r(G) \ge 1 \frac{c(r)}{g(n)}$, then \mathcal{G} is a class of g(n)-universal amplifiers,
- $f_r(v) \ge 1 \frac{c(r)}{g(n)}$ for at least h(n) vertices v,

then \mathcal{G} is a class of (h(n), g(n))-selective amplifiers.

Moreover:

• n-universal amplifiers are called strong universal amplifiers

• Can we really reach fixation probabilities $\frac{1}{n}$ and $1 - \frac{1}{n+r}$?

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every $r > r_0$ and every graph $G \in \mathcal{G}$ with $n \ge n_0$ vertices:

- $f_r(G) \ge 1 \frac{c(r)}{g(n)}$, then \mathcal{G} is a class of g(n)-universal amplifiers,
- $f_r(v) \ge 1 \frac{c(r)}{g(n)}$ for at least h(n) vertices v,

then \mathcal{G} is a class of (h(n), g(n))-selective amplifiers.

Moreover:

- *n*-universal amplifiers are called strong universal amplifiers
- $(\Theta(n), n)$ -selective amplifiers are called strong selective amplifiers

- Can we really reach fixation probabilities $\frac{1}{n}$ and $1 \frac{1}{n+r}$?
- Similarly we distinguish suppressors of selection:

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every r > 1 and every graph $G \in \mathcal{G}$ with $n \ge n_0(r)$ vertices:

• $f_r(G) \leq \frac{c(r)}{g(n)}$, then \mathcal{G} is a class of g(n)-universal suppressors,

- Can we really reach fixation probabilities $\frac{1}{n}$ and $1 \frac{1}{n+r}$?
- Similarly we distinguish suppressors of selection:

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every r > 1 and every graph $G \in \mathcal{G}$ with $n \ge n_0(r)$ vertices:

- $f_r(G) \leq \frac{c(r)}{g(n)}$, then \mathcal{G} is a class of g(n)-universal suppressors,
- $f_r(v) \le \frac{c(r)}{g(n)}$ for at least h(n) vertices v,

then \mathcal{G} is a class of (h(n), g(n))-selective suppressors.

- Can we really reach fixation probabilities $\frac{1}{n}$ and $1 \frac{1}{n+r}$?
- Similarly we distinguish suppressors of selection:

Definition

Let \mathcal{G} be an infinite class of undirected graphs. If for every r > 1 and every graph $G \in \mathcal{G}$ with $n \ge n_0(r)$ vertices:

- $f_r(G) \leq \frac{c(r)}{g(n)}$, then \mathcal{G} is a class of g(n)-universal suppressors,
- $f_r(v) \leq \frac{c(r)}{g(n)}$ for at least h(n) vertices v,

then \mathcal{G} is a class of (h(n), g(n))-selective suppressors.

Moreover:

- *n*-universal suppressors are called strong universal suppressors
- $(\Theta(n), n)$ -selective suppressors are called strong selective suppressors

First result:

Theorem

For any function $g(n) = \Omega(n^{\frac{3}{4}+\epsilon})$, where $\epsilon > 0$, there exists no class \mathcal{G} of g(n)-universal amplifiers for any $r > r_0 = 1$.

First result:

Theorem

For any function $g(n) = \Omega(n^{\frac{3}{4}+\varepsilon})$, where $\varepsilon > 0$, there exists no class \mathcal{G} of g(n)-universal amplifiers for any $r > r_0 = 1$.

Therefore:

Corollary

There exists no infinite class of strong universal amplifiers.

Second result:

Theorem

The class $\mathcal{G} = \{G_n : n \ge 1\}$ of urchin graphs is a class of $(\frac{n}{2}, n)$ -selective amplifiers.

Second result:

Theorem

The class $\mathcal{G} = \{G_n : n \ge 1\}$ of urchin graphs is a class of $(\frac{n}{2}, n)$ -selective amplifiers.

Theorem

For every function $\phi(n) = \omega(1)$, where $\phi(n) \le \sqrt{n}$, there exists a class $\mathcal{G}_{\phi(n)}$ of $(\frac{n}{\phi(n)+1}, \frac{n}{\phi(n)})$ -selective suppressors.

Second result:

Theorem

The class $\mathcal{G} = \{G_n : n \ge 1\}$ of urchin graphs is a class of $(\frac{n}{2}, n)$ -selective amplifiers.

Theorem

For every function $\phi(n) = \omega(1)$, where $\phi(n) \le \sqrt{n}$, there exists a class $\mathcal{G}_{\phi(n)}$ of $(\frac{n}{\phi(n)+1}, \frac{n}{\phi(n)})$ -selective suppressors.

Therefore there exist:

strong selective amplifiers

Second result:

Theorem

The class $\mathcal{G} = \{G_n : n \ge 1\}$ of urchin graphs is a class of $(\frac{n}{2}, n)$ -selective amplifiers.

Theorem

For every function $\phi(n) = \omega(1)$, where $\phi(n) \le \sqrt{n}$, there exists a class $\mathcal{G}_{\phi(n)}$ of $(\frac{n}{\phi(n)+1}, \frac{n}{\phi(n)})$ -selective suppressors.

Therefore there exist:

- strong selective amplifiers
- "quite" strong selective suppressors

Third result:

Theorem (Thermal Theorem)

Let G = (V, E) be a connected undirected graph and r > 1. Then $f_r(v) \ge \frac{r-1}{r+\frac{\deg v}{\deg \min}}$ for every $v \in V$.

• • = • • = •

Third result:

Theorem (Thermal Theorem) Let G = (V, E) be a connected undirected graph and r > 1. Then $f_r(v) \ge \frac{r-1}{r + \frac{\deg v}{\deg_{\min}}}$ for every $v \in V$.

- A generic lower bound:
 - for every undirected graph G
 - for every vertex v of G
 - it takes into account the structure of the graph

Third result:

Theorem (Thermal Theorem)

Let G = (V, E) be a connected undirected graph and r > 1. Then $f_r(v) \ge \frac{r-1}{r + \frac{\deg v}{\deg \min}}$ for every $v \in V$.

• A generic lower bound:

- for every undirected graph G
- for every vertex v of G
- it takes into account the structure of the graph
- It extends the Isothermal Theorem of [Lieberman et al., Nature, 2005]:
 - $f_r(G) \approx 1 \frac{1}{r}$ for regular graphs (i.e. deg $u = \deg v$ for all vertices $u, v \in V$)

Third result:

Theorem (Thermal Theorem)

Let G = (V, E) be a connected undirected graph and r > 1. Then $f_r(v) \ge \frac{r-1}{r + \frac{\deg v}{\deg \min}}$ for every $v \in V$.

• A generic lower bound:

- for every undirected graph G
- for every vertex v of G
- it takes into account the structure of the graph
- It extends the Isothermal Theorem of [Lieberman et al., Nature, 2005]:
 - $f_r(G) \approx 1 \frac{1}{r}$ for regular graphs (i.e. deg $u = \deg v$ for all vertices $u, v \in V$)
- Almost tight bound:
 - for regular graphs: $f_r(v) \ge \frac{r-1}{r+1}$

Third result:

Let G = (V, E) be a connected undirected graph and r > 1. Then $f_r(v) \ge \frac{r-1}{r + \frac{\deg v}{\deg \min}}$ for every $v \in V$.

• Main idea:

Theorem (Thermal Theorem)

- the temperature of vertex v is $\frac{1}{\deg v}$
- a hot vertex affects more often its neighbors than a cold vertex

Third result:

Let G = (V, E) be a connected undirected graph and r > 1. Then $f_r(v) \ge \frac{r-1}{r + \frac{\deg v}{\deg \min}}$ for every $v \in V$.

• Main idea:

Theorem (Thermal Theorem)

- the temperature of vertex v is $\frac{1}{\deg v}$
- a hot vertex affects more often its neighbors than a cold vertex
- If deg v is small \Rightarrow v is hot \Rightarrow $f_r(v)$ is guaranteed to be high

Third result:

Let G = (V, E) be a connected undirected graph and r > 1. Then $f_r(v) \ge \frac{r-1}{r + \frac{\deg v}{\deg \min}}$ for every $v \in V$.

Main idea:

Theorem (Thermal Theorem)

- the temperature of vertex v is $\frac{1}{\deg v}$
- a hot vertex affects more often its neighbors than a cold vertex
- If deg v is small \Rightarrow v is hot \Rightarrow $f_r(v)$ is guaranteed to be high

Corollary

In every graph G there exists at least one vertex v with $f_r(v) \ge \frac{r-1}{r+1}$ (i.e. independent of the size n).

Theorem

For any function $g(n) = \Omega(n^{\frac{3}{4}+\varepsilon})$, where $\varepsilon > 0$, there exists no class \mathcal{G} of g(n)-universal amplifiers for any r > 1.

Theorem

For any function $g(n) = \Omega(n^{\frac{3}{4}+\varepsilon})$, where $\varepsilon > 0$, there exists no class \mathcal{G} of g(n)-universal amplifiers for any r > 1.

Proof sketch (by contradiction).

- Let $g(n) = \Omega(n^{1-\delta})$, where $\delta = \frac{1}{4} \varepsilon < \frac{1}{4}$
- Suppose that \mathcal{G} is a class of g(n)-universal amplifiers, i.e. for every r > 1 and every graph $G \in \mathcal{G}$ with $n \ge n_0$ vertices:

 $f_r(G) \ge 1 - \frac{c(r)}{g(n)} \ge 1 - \frac{c_0(r)}{n^{1-\delta}}$

for appropriate functions c(r) and $c_0(r)$.

Proof sketch (by contradiction).

• We partition the vertices of *G* into three subsets:

$$V_1 = \{ v \in V : f_r(v) \ge 1 - \frac{c_0(r)}{n^{1-\delta}} \}$$

for appropriate functions $c_1(r)$ and $\phi(n, r) = \omega(1)$

Proof sketch (by contradiction).

• We partition the vertices of *G* into three subsets:

$$V_{1} = \{ v \in V : f_{r}(v) \ge 1 - \frac{c_{0}(r)}{n^{1-\delta}} \}$$

$$V_{2} = \{ v \in V \setminus V_{1} : f_{r}(v) \ge 1 - \frac{c_{1}(r)}{n^{1-2\delta}} \}$$

for appropriate functions $c_1(r)$ and $\phi(n, r) = \omega(1)$

Proof sketch (by contradiction).

• We partition the vertices of G into three subsets:

$$V_{1} = \{ v \in V : f_{r}(v) \ge 1 - \frac{c_{0}(r)}{n^{1-\delta}} \}$$

$$V_{2} = \{ v \in V \setminus V_{1} : f_{r}(v) \ge 1 - \frac{c_{1}(r)}{n^{1-2\delta}} \}$$

$$V_{3} = \{ v \in V \setminus (V_{1} \cup V_{2}) : f_{r}(v) \le 1 - \frac{\phi(n, r)}{n^{1-2\delta}} \}$$

for appropriate functions $c_1(r)$ and $\phi(n,r) = \omega(1)$

Proof sketch (by contradiction).

• We partition the vertices of G into three subsets:

$$V_{1} = \{ v \in V : f_{r}(v) \ge 1 - \frac{c_{0}(r)}{n^{1-\delta}} \}$$

$$V_{2} = \{ v \in V \setminus V_{1} : f_{r}(v) \ge 1 - \frac{c_{1}(r)}{n^{1-2\delta}} \}$$

$$V_{3} = \{ v \in V \setminus (V_{1} \cup V_{2}) : f_{r}(v) \le 1 - \frac{\phi(n, r)}{n^{1-2\delta}} \}$$

for appropriate functions $c_1(r)$ and $\phi(n, r) = \omega(1)$

• Since \mathcal{G} is a class of g(n)-universal amplifiers $\Rightarrow V_1 \neq \emptyset$

Proof sketch (by contradiction).

We can prove that:

• for every $v \in V_1$:

Paul Spirakis (CTI & Liverpool)

 $\deg \mathsf{v} \leq \mathsf{c}'(\mathsf{r}) \cdot \mathsf{n}^\delta$

Proof sketch (by contradiction).

We can prove that:

- for every $v \in V_1$:
- for every $u \in N(v)$, $v \in V_1$:

 $\deg v \leq c'(r) \cdot n^{\delta}$ $\deg u \geq rac{1}{c'(r)} \cdot n^{1-\delta}$

Proof sketch (by contradiction).

We can prove that:

- for every $v \in V_1$:
- for every $u \in N(v)$, $v \in V_1$:
- for every $v \in V_2$:

$$\begin{split} & \deg v \leq c'(r) \cdot n^{\delta} \\ & \deg u \geq \frac{1}{c'(r)} \cdot n^{1-\delta} \\ & \deg v \leq c''(r) \cdot n^{2\delta} \end{split}$$

Proof sketch (by contradiction).

We can prove that:

- for every $v \in V_1$:
- for every $u \in N(v)$, $v \in V_1$:
- for every $v \in V_2$:
- for every $u \in N(v)$, $v \in V_2$:

$$\begin{split} \deg v &\leq c'(r) \cdot n^{\delta} \\ \deg u &\geq \frac{1}{c'(r)} \cdot n^{1-\delta} \\ \deg v &\leq c''(r) \cdot n^{2\delta} \\ \deg u &\geq \frac{1}{c''(r)} \cdot n^{1-2\delta} \end{split}$$

Proof sketch (by contradiction).

We can prove that:

- for every $v \in V_1$:
- for every $u \in N(v)$, $v \in V_1$:
- for every $v \in V_2$:
- for every $u \in N(v)$, $v \in V_2$:

Therefore:

• Since $\delta < \frac{1}{4} \Rightarrow 1 - \delta > 1 - 2\delta > 2\delta > \delta$

 \Rightarrow every neighbor of a vertex $v \in V_1 \cup V_2$ must belong to V_3

 \Rightarrow $V_1 \cup V_2$ is an independent set

$$\begin{split} & \deg v \leq c'(r) \cdot n^{\delta} \\ & \deg u \geq \frac{1}{c'(r)} \cdot n^{1-\delta} \\ & \deg v \leq c''(r) \cdot n^{2\delta} \\ & \deg u \geq \frac{1}{c''(r)} \cdot n^{1-2\delta} \end{split}$$

Proof sketch (by contradiction).

Using an upper bound from [Mertzios, Nikoletseas, Raptopoulos, Spirakis, *Theor. Comp. Sci.*, 2013], it follows:

- $\Omega(n^{-3\delta}) \leq \frac{c'''(r)}{n^{1-\delta}}$, for some function c'''(r),
- contradiction since $\delta < \frac{1}{4}$

Strong selective amplifiers

- For every n ≥ 1, we define the "urchin" graph G_n with 2n vertices:
 - a clique with *n* vertices
 - an independent set with *n* vertices (called "noses")
 - a perfect matching between them

- For every n ≥ 1, we define the "urchin" graph G_n with 2n vertices:
 - a clique with *n* vertices
 - an independent set with *n* vertices (called "noses")
 - a perfect matching between them

17 / 32

Our result:

Theorem

For every r > 5, the fixation probability of a nose v of G_n is $f_r(v) \ge 1 - \frac{c(r)}{n}$, where c(r) is a function depending only on r.

• Consider a state with $k \in \{0, 1, \dots, n\}$ infected noses

Paul Spirakis (CTI & Liverpool)

- Consider a state with $k \in \{0, 1, \dots, n\}$ infected noses
- The infected clique vertices can be allocated as follows:
 - $Q_{i,x}^k$: among the neighbors of the infected noses, x are not infected among the neighbors of the non-infected noses, *i* are infected

Paul Spirakis (CTI & Liverpool)

- Consider a state with $k \in \{0, 1, \dots, n\}$ infected noses
- The infected clique vertices can be allocated as follows:
 - $Q_{i,x}^k$: among the neighbors of the infected noses, x are not infected among the neighbors of the non-infected noses, *i* are infected
 - P_i^k : *i* clique vertices are infected, as many of them as possible are neighbors of infected noses

- Consider a state with $k \in \{0, 1, \dots, n\}$ infected noses
- The infected clique vertices can be allocated as follows:
 - $Q_{i,x}^k$: among the neighbors of the infected noses, x are not infected among the neighbors of the non-infected noses, *i* are infected
 - *P*^{*k*}_{*i*}: *i* clique vertices are infected, as many of them as possible are neighbors of infected noses

• If
$$i = 0 \Rightarrow Q_{0,x}^k = P_{k-x}^k$$

Paul Spirakis (CTI & Liverpool)

October 2013 19 / 32

• If $i = 0 \Rightarrow Q_{0,x}^k = P_{k-x}^k$ • If $x = 0 \Rightarrow Q_{i,0}^k = P_{k+i}^k$

- If $i = 0 \Rightarrow Q_{0,x}^k = P_{k-x}^k$
- If $x = 0 \Rightarrow Q_{i,0}^k = P_{k+i}^k$

For any *i* and *x*, denote by $q_{i,x}^k$ (resp. p_i^k) the probability that:

- starting at state $Q_{i,x}^k$ (resp. P_i^k),
- we arrive to a state with k + 1 infected noses
- before arriving to a state with k-1 infected noses

• If
$$i = 0 \Rightarrow Q_{0,x}^k = P_{k-1}^k$$

• If $x = 0 \Rightarrow Q_{i,0}^k = P_{k+i}^k$

For any *i* and *x*, denote by $q_{i,x}^k$ (resp. p_i^k) the probability that:

- starting at state $Q_{i,x}^k$ (resp. P_i^k),
- we arrive to a state with k + 1 infected noses
- before arriving to a state with k-1 infected noses

Lemma

For all appropriate values of k, i, x: $q_{i,x}^k > p_{k+i-x}^k$.

19 / 32

• If
$$i = 0 \Rightarrow Q_{0,x}^k = P_{k-1}^k$$

• If $x = 0 \Rightarrow Q_{i,0}^k = P_{k+i}^k$

For any *i* and *x*, denote by $q_{i,x}^k$ (resp. p_i^k) the probability that:

- starting at state $Q_{i,x}^k$ (resp. P_i^k),
- we arrive to a state with k + 1 infected noses
- before arriving to a state with k-1 infected noses

Lemma

For all appropriate values of k, i, x: $q_{i,x}^k > p_{k+i-x}^k$.

 \Rightarrow to compute a lower bound on the fixation probability $f_r(v)$ of a nose v:

- whenever we have k infected noses and i infected clique vertices,
- we assume that we are at state P_i^k
- \bullet denote this relaxed Markov chain by ${\cal M}$

• We compute a lower bound for the fixation probability of state P_0^1

- We compute a lower bound for the fixation probability of state P_0^1
- To analyze the Markov chain \mathcal{M} :
 - we decompose \mathcal{M} into n-1 Markov chains $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_{n-1}$
- \mathcal{M}_k captures transitions of \mathcal{M} between states with k infected noses

- We compute a lower bound for the fixation probability of state P_0^1
- To analyze the Markov chain \mathcal{M} :
 - we decompose \mathcal{M} into n-1 Markov chains $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_{n-1}$
- \mathcal{M}_k captures transitions of \mathcal{M} between states with k infected noses
- \mathcal{M}_k has two absorbing states:
 - F_{k+1} (arbitrary state with k+1 infected noses) \Rightarrow switch to \mathcal{M}_{k+1}
 - F_{k-1} (arbitrary state with k-1 infected noses) \Rightarrow switch to \mathcal{M}_{k-1}

- We compute a lower bound for the fixation probability of state P_0^1
- To analyze the Markov chain \mathcal{M} :
 - we decompose \mathcal{M} into n-1 Markov chains $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_{n-1}$
- \mathcal{M}_k captures transitions of \mathcal{M} between states with k infected noses
- \mathcal{M}_k has two absorbing states:
 - F_{k+1} (arbitrary state with k+1 infected noses) \Rightarrow switch to \mathcal{M}_{k+1}
 - F_{k-1} (arbitrary state with k-1 infected noses) \Rightarrow switch to \mathcal{M}_{k-1}

Since we need to compute a lower bound of the fixation probability:

- whenever we arrive at state F_{k+1} or state F_{k-1} ,
- we assume that we have the smallest umber of infected clique vertices

Therefore:

•
$$F_{k-1} = P_0^{k-1}$$
 (no infected clique noses)

Since we need to compute a lower bound of the fixation probability:

- whenever we arrive at state F_{k+1} or state F_{k-1} ,
- we assume that we have the smallest umber of infected clique vertices

Therefore:

• $F_{k-1} = P_0^{k-1}$ (no infected clique noses)

 F_{k+1} = P^{k+1}_{k+1} (we need at least k + 1 infected clique vertices to infect another nose)

Since we need to compute a lower bound of the fixation probability:

- whenever we arrive at state F_{k+1} or state F_{k-1} ,
- we assume that we have the smallest umber of infected clique vertices

Therefore:

• $F_{k-1} = P_0^{k-1}$ (no infected clique noses)

 F_{k+1} = P^{k+1}_{k+1} (we need at least k + 1 infected clique vertices to infect another nose)

To analyze the Markov chains \mathcal{M}_k , k = 1, 2, ..., n-1:

• we decompose every \mathcal{M}_k into two Markov chains \mathcal{M}_k^1 and \mathcal{M}_k^2

To analyze the Markov chains \mathcal{M}_k , k = 1, 2, ..., n-1:

• we decompose every \mathcal{M}_k into two Markov chains \mathcal{M}_k^1 and \mathcal{M}_k^2

To analyze the Markov chains \mathcal{M}_k , k = 1, 2, ..., n-1:

• we decompose every \mathcal{M}_k into two Markov chains \mathcal{M}_k^1 and \mathcal{M}_k^2

Using this decomposition of the chain \mathcal{M} into the chains $\{\mathcal{M}_k^1, \mathcal{M}_k^2\}_{k=1}^{n-1}$:

Using this decomposition of the chain \mathcal{M} into the chains $\{\mathcal{M}_k^1, \mathcal{M}_k^2\}_{k=1}^{n-1}$:

transitions from P_0^k : through the Markov chain \mathcal{M}_1

Using this decomposition of the chain \mathcal{M} into the chains $\{\mathcal{M}_k^1, \mathcal{M}_k^2\}_{k=1}^{n-1}$:

transitions from P_0^k : through the Markov chain \mathcal{M}_1 transitions from P_k^k : through the Markov chain \mathcal{M}_2

Using this decomposition of the chain \mathcal{M} into the chains $\{\mathcal{M}_k^1, \mathcal{M}_k^2\}_{k=1}^{n-1}$:

Relax \mathcal{M} further: the infected vertices at P_0^k are a subset of those at P_k^k

Using this decomposition of the chain \mathcal{M} into the chains $\{\mathcal{M}_k^1, \mathcal{M}_k^2\}_{k=1}^{n-1}$:

Relax \mathcal{M} further: the infected vertices at P_0^k are a subset of those at P_k^k

Eliminate from \mathcal{M}' the states $P_k^k \Rightarrow$ a birth-death process \mathcal{B}

Paul Spirakis (CTI & Liverpool)

Strong Bounds for Evolution in Networks

October 2013 22 / 32

In the birth-death process \mathcal{B} :

we can compute a lower bound for the probability that, starting at P₀¹, we arrive at P_nⁿ before arriving at P₀⁰

In the birth-death process \mathcal{B} :

 \mathcal{B} :

- we can compute a lower bound for the probability that, starting at P₀¹, we arrive at P_nⁿ before arriving at P₀⁰
- this provides a lower bound for the fixation probability of P_0^1 in the original chain \mathcal{M}

In the birth-death process \mathcal{B} :

- we can compute a lower bound for the probability that, starting at P₀¹, we arrive at P_nⁿ before arriving at P₀⁰
- this provides a lower bound for the fixation probability of P_0^1 in the original chain \mathcal{M}

 \mathcal{B} :

Using these decompositions, we prove that:

Theorem

For every r > 5, the fixation probability of a nose v of G_n is $f_r(v) \ge 1 - \frac{c(r)}{n}$, where c(r) is a function depending only on r.

 \Rightarrow urchin graphs are $(\frac{n}{2}, n)$ -amplifiers

Theorem (Thermal Theorem)

Let G = (V, E) be a connected undirected graph and r > 1. Then $f_r(v) \ge \frac{r-1}{r+\frac{\deg v}{\deg - i r}}$ for every $v \in V$.

• • = • • = •

Theorem (Thermal Theorem)

Let G = (V, E) be a connected undirected graph and r > 1. Then $f_r(v) \ge \frac{r-1}{r + \frac{\deg v}{\deg \min}}$ for every $v \in V$.

Main idea for the proof:

- define a system L₀ of (exponentially many) linear equations (one variable for every vertex subset S)
- the solutions of L_0 provide a lower bound for the fixation probabilities of these sets S

24 / 32

Theorem (Thermal Theorem)

Let G = (V, E) be a connected undirected graph and r > 1. Then $f_r(v) \ge \frac{r-1}{r + \frac{\deg v}{\deg \min}}$ for every $v \in V$.

Main idea for the proof:

- define a system L₀ of (exponentially many) linear equations (one variable for every vertex subset S)
- the solutions of L₀ provide a lower bound for the fixation probabilities of these sets S
- construct from L_0 a Markov chain \mathcal{M}_0
- modify \mathcal{M}_0 into the chain \mathcal{M}_0^*

Theorem (Thermal Theorem)

Let G = (V, E) be a connected undirected graph and r > 1. Then $f_r(v) \ge \frac{r-1}{r + \frac{\deg v}{\deg \min}}$ for every $v \in V$.

Main idea for the proof:

- define a system L₀ of (exponentially many) linear equations (one variable for every vertex subset S)
- the solutions of L₀ provide a lower bound for the fixation probabilities of these sets S
- construct from L_0 a Markov chain \mathcal{M}_0
- modify \mathcal{M}_0 into the chain \mathcal{M}_0^*
- for every i = 1, 2, ..., n-1: relax \mathcal{M}_{i-1}^* into the chain \mathcal{M}_i^*
- \mathcal{M}_{n-1}^* provides the desired lower bound

For every vertex subset $S \subseteq V$:

• the fixation probability $f_r(S)$ of S is computed by:

$$f_r(S) = \frac{\sum_{xy \in E, x \in S, y \notin S} \left(r \frac{1}{\deg x} f_r(S+y) + \frac{1}{\deg y} f_r(S-x) \right)}{\sum_{xy \in E, x \in S, y \notin S} \left(\frac{r}{\deg x} + \frac{1}{\deg y} \right)}$$

25 / 32

where $f_r(\emptyset) = 0$ and $f_r(V) = 1$ (boundary conditions)

For every vertex subset $S \subseteq V$:

• the fixation probability $f_r(S)$ of S is computed by:

$$f_r(S) = \frac{\sum_{xy \in E, x \in S, y \notin S} \left(r \frac{1}{\deg x} f_r(S+y) + \frac{1}{\deg y} f_r(S-x) \right)}{\sum_{xy \in E, x \in S, y \notin S} \left(\frac{r}{\deg x} + \frac{1}{\deg y} \right)}$$

where $f_r(\emptyset) = 0$ and $f_r(V) = 1$ (boundary conditions)

For every such edge $xy \in E$ (where $x \in S$ and $y \notin S$):

- x "infects" y with probability proportional to $\frac{1}{\text{deg }x}$
- y "disinfects" x with probability proportional to $\frac{1}{\deg y}$

For every vertex subset $S \subseteq V$:

• the fixation probability $f_r(S)$ of S is computed by:

$$f_r(S) = \frac{\sum_{xy \in E, x \in S, y \notin S} \left(r \frac{1}{\deg x} f_r(S+y) + \frac{1}{\deg y} f_r(S-x) \right)}{\sum_{xy \in E, x \in S, y \notin S} \left(\frac{r}{\deg x} + \frac{1}{\deg y} \right)}$$

where $f_r(\emptyset) = 0$ and $f_r(V) = 1$ (boundary conditions)

For every such edge $xy \in E$ (where $x \in S$ and $y \notin S$):

• x "infects" y with probability proportional to $\frac{1}{\deg x}$

• y "disinfects" x with probability proportional to $\frac{1}{\deg y}$

$$\Rightarrow$$
 for every vertex $v \in V$:

• we define $\frac{1}{\deg v}$ as the temperature of v

• a "hot" vertex affects more often its neighbors than a "cold" vertex

For every vertex subset $S \subseteq V$:

• the fixation probability $f_r(S)$ of S is computed by:

$$f_r(S) = \frac{\sum_{xy \in E, x \in S, y \notin S} \left(r \frac{1}{\deg x} f_r(S+y) + \frac{1}{\deg y} f_r(S-x) \right)}{\sum_{xy \in E, x \in S, y \notin S} \left(\frac{r}{\deg x} + \frac{1}{\deg y} \right)}$$

where $f_r(\emptyset) = 0$ and $f_r(V) = 1$ (boundary conditions)

Furthermore:

• for every set $S \notin \{\emptyset, V\}$ there exists a vertex $x(S) \in S$ and a vertex $y(S) \notin S$ such that $x(S)y(S) \in E$ and:

$$f_r(S) \geq \frac{\left(r\frac{1}{\deg x(S)}f_r(S+y(S)) + \frac{1}{\deg y(S)}f_r(S-x(S))\right)}{\left(\frac{r}{\deg x(S)} + \frac{1}{\deg y(S)}\right)}$$

25 / 32
Therefore:

• by replacing all " \geq " with "=", we obtain a lower bound for all $f_r(S)$

• for every set $S \notin \{\emptyset, V\}$ there exists a vertex $x(S) \in S$ and a vertex $y(S) \notin S$ such that $x(S)y(S) \in E$ and:

$$f_r(S) \geq \frac{\left(r\frac{1}{\deg x(S)}f_r(S+y(S)) + \frac{1}{\deg y(S)}f_r(S-x(S))\right)}{\left(\frac{r}{\deg x(S)} + \frac{1}{\deg y(S)}\right)}$$

Definition (the linear system L_0)

Let G = (V, E) be a graph and r > 1. Every vertex $v \in V$ has a weight (temperature) $d_v > 0$. The linear system L_0 on the variables $p_r(S)$, where $\emptyset \subset S \subset V$, is:

$$p_{r}(S) = \frac{r \cdot d_{x(S)} \cdot p_{r}(S + y(S)) + d_{y(S)} \cdot p_{r}(S - x(S))}{r \cdot d_{x(S)} + d_{y(S)}}$$

with boundary conditions $p_r(\emptyset) = 0$ and $p_r(V) = 1$.

26 / 32

Definition (the linear system L_0)

Let G = (V, E) be a graph and r > 1. Every vertex $v \in V$ has a weight (temperature) $d_v > 0$. The linear system L_0 on the variables $p_r(S)$, where $\emptyset \subset S \subset V$, is:

$$p_r(S) = \frac{r \cdot d_{x(S)} \cdot p_r(S + y(S)) + d_{y(S)} \cdot p_r(S - x(S))}{r \cdot d_{x(S)} + d_{y(S)}}$$

with boundary conditions $p_r(\emptyset) = 0$ and $p_r(V) = 1$.

The system L_0 defines naturally the Markov chain \mathcal{M}_0 :

- one state for every vertex subset $S \subseteq V$
- states ∅ and V are absorbing
- every non-absorbing state *S* has exactly two transitions to the states S + y(S) and S x(S), with transition probabilities $q_S = \frac{rd_{x(S)}}{rd_{y(S)} + d_{y(S)}}$ and $1 q_S$, respectively

ヘロト 不得下 不足下 不足下

Definition (the linear system L_0)

Let G = (V, E) be a graph and r > 1. Every vertex $v \in V$ has a weight (temperature) $d_v > 0$. The linear system L_0 on the variables $p_r(S)$, where $\emptyset \subset S \subset V$, is:

$$p_{r}(S) = \frac{r \cdot d_{x(S)} \cdot p_{r}(S + y(S)) + d_{y(S)} \cdot p_{r}(S - x(S))}{r \cdot d_{x(S)} + d_{y(S)}}$$

with boundary conditions $p_r(\emptyset) = 0$ and $p_r(V) = 1$.

Observation

By setting $d_v = \frac{1}{\deg v}$ for every $v \in V$, it follows that $f_r(S) \ge p_r(S)$ for every set $S \subseteq V$.

We construct now the chain \mathcal{M}_0^* from the chain \mathcal{M}_0 as follows:

• for every set S in \mathcal{M}_0 :

We construct now the chain \mathcal{M}_0^* from the chain \mathcal{M}_0 as follows:

• for every set S in \mathcal{M}_0 :

• we add a new dummy state X_S:

We construct now the chain \mathcal{M}_0^* from the chain \mathcal{M}_0 as follows:

• for every set S in \mathcal{M}_0 :

• we add a new dummy state X_S :

 \Rightarrow All values of $p_r(S)$ in \mathcal{M}_0^* remain the same as in \mathcal{M}_0

- Consider an arbitrary numbering $v_0, v_1, \ldots, v_{n-1}$ of the vertices of G
- For every i = 1, 2, ..., n − 1, construct from M^{*}_{i−1} the chain M^{*}_i as follows:

() for all sets $S \subset V$ with $y(S) = v_i$, change the transitions from X_S :

- Consider an arbitrary numbering $v_0, v_1, \ldots, v_{n-1}$ of the vertices of G
- For every i = 1, 2, ..., n − 1, construct from M^{*}_{i−1} the chain M^{*}_i as follows:

• for all sets $S \subset V$ with $y(S) = v_i$, change the transitions from X_S :

28 / 32

 \Rightarrow the values of $p_r(S)$ do not decrease in \mathcal{M}_i^*

- Consider an arbitrary numbering $v_0, v_1, \ldots, v_{n-1}$ of the vertices of G
- For every i = 1, 2, ..., n − 1, construct from M^{*}_{i−1} the chain M^{*}_i as follows:

• for all sets $S \subset V$ with $y(S) = v_i$, change the transitions from X_S :

2 for all these sets S, eliminate the dummy state X_S

 \Rightarrow the values of $p_r(S)$ do not decrease in \mathcal{M}_i^*

- Consider an arbitrary numbering $v_0, v_1, \ldots, v_{n-1}$ of the vertices of G
- For every i = 1, 2, ..., n − 1, construct from M^{*}_{i−1} the chain M^{*}_i as follows:

• for all sets $S \subset V$ with $y(S) = v_i$, change the transitions from X_S :

2 for all these sets S, eliminate the dummy state X_S

 \Rightarrow the values of $p_r(S)$ do not decrease in \mathcal{M}_i^*

Lemma

For all these states S, the forward probability of S in \mathcal{M}_i^* is a monotone decreasing function of the temperature d_{v_i} of v_i .

Paul Spirakis (CTI & Liverpool) Strong Bounds for Evolution in Networks

- We increase the temperature d_{v_i} in \mathcal{M}_i^* to d_{\max}
- \Rightarrow the values of $p_r(S)$ do not increase

• We increase the temperature d_{v_i} in \mathcal{M}_i^* to d_{\max} \Rightarrow the values of $p_r(S)$ do not increase

At the end, in the chain \mathcal{M}_{n-1}^* :

•
$$d_{v_1} = d_{v_2} = \ldots = d_{v_{n-1}} = d_{\max} = \frac{1}{\deg_{\min}}$$

• $d_{v_0} = \frac{1}{\deg_{v_0}}$

• for every set S, the values of $p_r(S)$ are not larger than in \mathcal{M}_0^*

29 / 32

• We increase the temperature d_{v_i} in \mathcal{M}_i^* to d_{\max} \Rightarrow the values of $p_r(S)$ do not increase

At the end, in the chain \mathcal{M}_{n-1}^* :

•
$$d_{v_1} = d_{v_2} = \ldots = d_{v_{n-1}} = d_{\max} = \frac{1}{\deg_{\min}}$$

• $d_{v_0} = \frac{1}{\deg_{v_0}}$

• for every set S, the values of $p_r(S)$ are not larger than in \mathcal{M}_0^*

• We use techniques similar to the lsothermal Theorem in [Lieberman et al., *Nature*, 2005] to prove that:

$$f_r(v_0) \geq \frac{(r-1)}{r + \frac{d_{\max}}{d_{v_0}}} = \frac{(r-1)}{r + \frac{\deg v_0}{\deg_{\min}}}$$

• v_0 is chosen arbitrarily \Rightarrow the Thermal Theorem

• Evolutionary graph theory studies how network (graph) topology influences evolution between interacting individuals.

- Evolutionary graph theory studies how network (graph) topology influences evolution between interacting individuals.
- We refined the notion of fixation probability to specific vertices v

- Evolutionary graph theory studies how network (graph) topology influences evolution between interacting individuals.
- We refined the notion of fixation probability to specific vertices v
- We proved:
 - there exist no strong universal amplifiers
 - there exist strong selective amplifiers
 - there exist "quite" strong selective suppressors
 - the Thermal Theorem (lower bound)

Summary and open problems

- Do there exist stronger suppressors / amplifiers of selection?
 - the fixation probability of the strongest known amplifiers of natural selection is $1 \frac{1}{r^2}$ ("star")
 - the fixation probability of the strongest known suppressors of natural selection is $\frac{1}{2}(1-\frac{1}{r})$ ("clique-wheels")

- Do there exist stronger suppressors / amplifiers of selection?
 - the fixation probability of the strongest known amplifiers of natural selection is $1 \frac{1}{r^2}$ ("star")
 - the fixation probability of the strongest known suppressors of natural selection is $\frac{1}{2}(1-\frac{1}{r})$ ("clique-wheels")
- Is the fixation probability of all undirected graphs upper/lower bounded by a function c(r) of the fitness r?

- Do there exist stronger suppressors / amplifiers of selection?
 - the fixation probability of the strongest known amplifiers of natural selection is $1 \frac{1}{r^2}$ ("star")
 - the fixation probability of the strongest known suppressors of natural selection is $\frac{1}{2}(1-\frac{1}{r})$ ("clique-wheels")
- Is the fixation probability of all undirected graphs upper/lower bounded by a function c(r) of the fitness r?
- More types of mutants (many colors)?

Thank you for your attention!