## Algebraic Combinatorics and the Parity Argument

PPA membership of Combinatorial Nullstellensatz and related problems

> László Varga

## ESRC Workshop on Algorithmic Game Theory, London 17-18 October 2013

Institute of Mathematics, Eötvös Loránd University, Budapest
LVarga@cs.elte.hu

## Contents

(1) Motivations

- Alon's Combinatorial Nullstellensatz
- $p^{d}$-divisible subgraphs
- Our main results
(2) The algebraic part - sketch
- Conditions modulo $p^{d}$ and conditions modulo $p$
- Key observation through an example
(3) The complexity of Combinatorial Nullstellensatz
- The class PPA and Chévalley's MOD 2
- PPA membership of Combinatorial Nullstellensatz
- $2^{d}$-divisible subgraphs


## Alon's Combinatorial Nullstellensatz

In 1999, Alon presented a general algebraic technique and its numerous applications in Combinatorial Number Theory, in Graph Theory and in Combinatorics.

## Alon's Combinatorial Nullstellensatz

In 1999, Alon presented a general algebraic technique and its numerous applications in Combinatorial Number Theory, in Graph Theory and in Combinatorics.

## Theorem (Combinatorial Nullstellensatz, Alon)

Let $\mathbb{F}$ be an arbitrary field, and let $f \in \mathbb{F}\left[x_{1}, \ldots x_{m}\right]$ be an $m$-variable polynomial. Suppose that the degree of $f$ is $\sum_{j=1}^{n} t_{j}$, where each $t_{j}$ is a nonnegative integer, and that the coefficient of $\prod_{j=1}^{m} x_{j}^{t_{j}}$ is nonzero. Then, if $S_{1}, S_{2}, \ldots, S_{m}$ are subsets of $\mathbb{F}$ with $\left|S_{j}\right|>t_{j}$ for all $j=1, \ldots, m$, then there exists an $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in S_{1} \times S_{2} \times \cdots \times S_{m}$ such that $f\left(s_{1}, s_{2}, \ldots, s_{m}\right) \neq 0$.

## Alon's Combinatorial Nullstellensatz

In 1999, Alon presented a general algebraic technique and its numerous applications in Combinatorial Number Theory, in Graph Theory and in Combinatorics.

## Theorem (Combinatorial Nullstellensatz, Alon)

Let $\mathbb{F}$ be an arbitrary field, and let $f \in \mathbb{F}\left[x_{1}, \ldots x_{m}\right]$ be an $m$-variable polynomial. Suppose that the degree of $f$ is $\sum_{j=1}^{n} t_{j}$, where each $t_{j}$ is a nonnegative integer, and that the coefficient of $\prod_{j=1}^{m} x_{j}^{t_{j}}$ is nonzero. Then, if $S_{1}, S_{2}, \ldots, S_{m}$ are subsets of $\mathbb{F}$ with $\left|S_{j}\right|>t_{j}$ for all $j=1, \ldots, m$, then there exists an $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in S_{1} \times S_{2} \times \cdots \times S_{m}$ such that $f\left(s_{1}, s_{2}, \ldots, s_{m}\right) \neq 0$.

## Alon's Combinatorial Nullstellensatz

In 1999, Alon presented a general algebraic technique and its numerous applications in Combinatorial Number Theory, in Graph Theory and in Combinatorics.

## Theorem (Combinatorial Nullstellensatz, Alon)

Let $\mathbb{F}$ be an arbitrary field, and let $f \in \mathbb{F}\left[x_{1}, \ldots x_{m}\right]$ be an $m$-variable polynomial. Suppose that the degree of $f$ is $\sum_{j=1}^{n} t_{j}$, where each $t_{j}$ is a nonnegative integer, and that the coefficient of $\prod_{j=1}^{m} x_{j}^{t_{j}}$ is nonzero. Then, if $S_{1}, S_{2}, \ldots, S_{m}$ are subsets of $\mathbb{F}$ with $\left|S_{j}\right|>t_{j}$ for all $j=1, \ldots, m$, then there exists an $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in S_{1} \times S_{2} \times \cdots \times S_{m}$ such that $f\left(s_{1}, s_{2}, \ldots, s_{m}\right) \neq 0$.

The proofs of its applications are algebraic, and hence non-constructive in the sense that they supply no efficient algorithm for solving the corresponding algorithmic problems.

## Combinatorial Nullstellensatz MOD 2

## Theorem (Combinatorial Nullstellensatz MOD 2)

Let $f \in \mathbb{F}_{2}\left[x_{1}, \ldots x_{m}\right]$ be an $m$-variable polynomial. Suppose that the degree of $f$ is $m$ and that the coefficient of $x_{1} x_{2} \ldots x_{m}$ is nonzero. Then, there exists an $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in\{0,1\}^{m}$ such that $f\left(s_{1}, s_{2}, \ldots, s_{m}\right) \neq 0$.

## Combinatorial Nullstellensatz MOD 2

## Theorem (Combinatorial Nullstellensatz MOD 2)

Let $f \in \mathbb{F}_{2}\left[x_{1}, \ldots x_{m}\right]$ be an $m$-variable polynomial. Suppose that the degree of $f$ is $m$ and that the coefficient of $x_{1} x_{2} \ldots x_{m}$ is nonzero. Then, there exists an $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in\{0,1\}^{m}$ such that $f\left(s_{1}, s_{2}, \ldots, s_{m}\right) \neq 0$.

## Combinatorial Nullstellensatz MOD 2

## Theorem (Combinatorial Nullstellensatz MOD 2)

Let $f \in \mathbb{F}_{2}\left[x_{1}, \ldots x_{m}\right]$ be an m-variable polynomial. Suppose that the degree of $f$ is $m$ and that the coefficient of $x_{1} x_{2} \ldots x_{m}$ is nonzero. Then, there exists an $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in\{0,1\}^{m}$ such that $f\left(s_{1}, s_{2}, \ldots, s_{m}\right) \neq 0$.

For example, if $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{2} x_{3}$,

## Combinatorial Nullstellensatz MOD 2

## Theorem (Combinatorial Nullstellensatz MOD 2)

Let $f \in \mathbb{F}_{2}\left[x_{1}, \ldots x_{m}\right]$ be an m-variable polynomial. Suppose that the degree of $f$ is $m$ and that the coefficient of $x_{1} x_{2} \ldots x_{m}$ is nonzero. Then, there exists an $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in\{0,1\}^{m}$ such that $f\left(s_{1}, s_{2}, \ldots, s_{m}\right) \neq 0$.

For example, if $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{2} x_{3}, f(1,1,1)=1$.

## p-divisible subgraphs

A nonempty subset of edges is called p-divisible subgraph such that the number of edges incident to every vertex is divisible by $p$.
What does it mean in the case $p=2$ ?

## p-divisible subgraphs

A nonempty subset of edges is called p-divisible subgraph such that the number of edges incident to every vertex is divisible by $p$.
What does it mean in the case $p=2$ ? a cycle,

## p-divisible subgraphs

A nonempty subset of edges is called $p$-divisible subgraph such that the number of edges incident to every vertex is divisible by $p$.
What does it mean in the case $p=2$ ? a cycle, an Eulerian subgraph.

## $p$-divisible subgraphs

A nonempty subset of edges is called $p$-divisible subgraph such that the number of edges incident to every vertex is divisible by $p$.
What does it mean in the case $p=2$ ? a cycle, an Eulerian subgraph.

## Theorem (Alon)

For any prime $p$ and any graph $G$ on $n$ vertices and $m$ edges, if $m>n \cdot(p-1)$, there exists a p-divisible subgraph.

## $p$-divisible subgraphs

A nonempty subset of edges is called $p$-divisible subgraph such that the number of edges incident to every vertex is divisible by $p$.
What does it mean in the case $p=2$ ? a cycle, an Eulerian subgraph.

## Theorem (Alon)

For any prime $p$ and any graph $G$ on $n$ vertices and $m$ edges, if $m>n \cdot(p-1)$, there exists a p-divisible subgraph.

## p-divisible subgraphs

A nonempty subset of edges is called $p$-divisible subgraph such that the number of edges incident to every vertex is divisible by $p$.
What does it mean in the case $p=2$ ? a cycle, an Eulerian subgraph.

## Theorem (Alon)

For any prime $p$ and any graph $G$ on $n$ vertices and $m$ edges, if $m>n \cdot(p-1)$, there exists a p-divisible subgraph.

If $m>n$, of course, there exists a 2-divisible subgraph, e.g. a cycle.

## p-divisible subgraphs

A nonempty subset of edges is called p-divisible subgraph such that the number of edges incident to every vertex is divisible by $p$.

## Theorem (Alon)

For any prime $p$ and any graph $G$ on $n$ vertices and $m$ edges, if $m>n \cdot(p-1)$, there exists a p-divisible subgraph.


## p-divisible subgraphs

A nonempty subset of edges is called p-divisible subgraph such that the number of edges incident to every vertex is divisible by $p$.

## Theorem (Alon)

For any prime $p$ and any graph $G$ on $n$ vertices and $m$ edges, if $m>n \cdot(p-1)$, there exists a p-divisible subgraph.


## $p$-divisible subgraphs

A nonempty subset of edges is called p-divisible subgraph such that the number of edges incident to every vertex is divisible by $p$.

## Theorem (Alon)

For any prime $p$ and any graph $G$ on $n$ vertices and $m$ edges, if $m>n \cdot(p-1)$, there exists a p-divisible subgraph.

$n=5$ vertices, $11>5 \cdot(3-1)$ edges $\Longrightarrow$ there exists a 3-divisible subgraph.

## $p$-divisible subgraphs

A nonempty subset of edges is called p-divisible subgraph such that the number of edges incident to every vertex is divisible by $p$.

## Theorem (Alon)

For any prime $p$ and any graph $G$ on $n$ vertices and $m$ edges, if $m>n \cdot(p-1)$, there exists a p-divisible subgraph.

$n=5$ vertices, $11>5 \cdot(3-1)$ edges $\Longrightarrow$ there exists a 3-divisible subgraph.

## Useful corollary of Combinatorial Nullstellensatz

Let $p$ be an arbitrary prime. Let us be given some $m$-variable polynomials $f_{1}, f_{2}, \ldots, f_{n}$ over $\mathbb{F}_{p}$ with no constant terms. If

$$
m>(p-1) \cdot \sum_{i=1}^{n} \operatorname{deg}\left(f_{i}\right)
$$

then there exists a vector $\mathbf{0} \neq \mathbf{x} \in\{0,1\}^{m}$ such that $f_{i}(\mathbf{x})=0$ for all $i$.
$f_{A}(\mathbf{x})=x_{1}+x_{2}+x_{3}+x_{4}$
$f_{B}(\mathbf{x})=x_{4}+x_{5}+x_{6}+x_{7}$
$f_{C}(\mathbf{x})=x_{7}+x_{3}+x_{8}+x_{9}$
$f_{D}(\mathbf{x})=x_{1}+x_{5}+x_{10}+x_{11}$
$f_{E}(\mathbf{x})=x_{11}+x_{10}+x_{2}+x_{6}+x_{8}+x_{9}$
$11=m>5 \cdot(3-1) \Rightarrow$
exists a vector $\mathbf{0} \neq \mathbf{x}: f_{i}(\mathbf{x})=0$.


## Useful corollary of Combinatorial Nullstellensatz

Let $p$ be an arbitrary prime. Let us be given some $m$-variable polynomials $f_{1}, f_{2}, \ldots, f_{n}$ over $\mathbb{F}_{p}$ with no constant terms. If

$$
m>(p-1) \cdot \sum_{i=1}^{n} \operatorname{deg}\left(f_{i}\right)
$$

then there exists a vector $\mathbf{0} \neq \mathbf{x} \in\{0,1\}^{m}$ such that $f_{i}(\mathbf{x})=0$ for all $i$.
$f_{A}(\mathbf{x})=x_{1}+x_{2}+x_{3}+x_{4}$
$f_{B}(\mathbf{x})=x_{4}+x_{5}+x_{6}+x_{7}$
$f_{C}(\mathbf{x})=x_{7}+x_{3}+x_{8}+x_{9}$
$f_{D}(\mathbf{x})=x_{1}+x_{5}+x_{10}+x_{11}$
$f_{E}(\mathbf{x})=x_{11}+x_{10}+x_{2}+x_{6}+x_{8}+x_{9}$
$11=m>5 \cdot(3-1) \Rightarrow$
exists a vector $\mathbf{0} \neq \mathbf{x}: f_{i}(\mathbf{x})=0$.


## $p^{d}$-divisble subgraphs

In a previous paper, Alon, Friedland and Kalai answered the analogous question modulo prime powers with no use of Combinatorial Nullstellensatz.

## Theorem (Alon, Friedland and Kalai)

For any prime $p$ and any graph $G$ on $n$ vertices and $m$ edges, if $m>n \cdot\left(p^{d}-1\right)$, there exist a $p^{d}$-divisible subgraph.

## $p^{d}$-divisble subgraphs

In a previous paper, Alon, Friedland and Kalai answered the analogous question modulo prime powers with no use of Combinatorial Nullstellensatz.

## Theorem (Alon, Friedland and Kalai)

For any prime $p$ and any graph $G$ on $n$ vertices and $m$ edges, if $m>n \cdot\left(p^{d}-1\right)$, there exist a $p^{d}$-divisible subgraph.

## $p^{d}$-divisble subgraphs

In a previous paper, Alon, Friedland and Kalai answered the analogous question modulo prime powers with no use of Combinatorial Nullstellensatz.

## Theorem (Alon, Friedland and Kalai)

For any prime $p$ and any graph $G$ on $n$ vertices and $m$ edges, if $m>n \cdot\left(p^{d}-1\right)$, there exist a $p^{d}$-divisible subgraph.

The analogous theorem about $k$-divisible subgraphs is not known, if $k$ is not a prime power, but one can prove that if the graph has sufficiently large number of edges, there exists a $k$-divisible subgraph.

## Our main results

## New proofs via Combinatorial Nullstellensatz

We give a reduction of $p^{d}$-divisible subgraphs to Combinatorial Nullstellensatz.

## Our main results

## New proofs via Combinatorial Nullstellensatz

We give a reduction of $p^{d}$-divisible subgraphs to Combinatorial Nullstellensatz.

## Theorem

Suppose that $f_{1}, f_{2}, \ldots, f_{n}$ are $m$-variable polynomials over $\mathbb{Z}$ without constant terms. Then, if

$$
m>\left(p^{d}-1\right) \cdot \sum_{i=1}^{n} \operatorname{deg}\left(f_{i}\right)
$$

there exists a $\mathbf{0} \neq \mathbf{x} \in\{0,1\}^{m}$ such that $p^{d} \mid f_{i}(\mathbf{x})$ for all $i$.

## Our main results

## New proofs via Combinatorial Nullstellensatz

We give a reduction of $p^{d}$-divisible subgraphs to Combinatorial Nullstellensatz.

## Theorem

Suppose that $f_{1}, f_{2}, \ldots, f_{n}$ are $m$-variable polynomials over $\mathbb{Z}$ without constant terms. Then, if

$$
m>\left(p^{d}-1\right) \cdot \sum_{i=1}^{n} \operatorname{deg}\left(f_{i}\right)
$$

there exists a $\mathbf{0} \neq \mathbf{x} \in\{0,1\}^{m}$ such that $p^{d} \mid f_{i}(\mathbf{x})$ for all $i$.

## Theorem

Finding a $2^{d}$-divisible subgraph and Combinatorial Nullstellensatz MOD 2 belong to PPA.

## Conditions modulo $p^{d}$ and conditions modulo $p$

$p^{d}$-divisible subgraphs - conditions modulo $p^{d}$.

## Conditions modulo $p^{d}$ and conditions modulo $p$

$p^{d}$-divisible subgraphs - conditions modulo $p^{d}$.

Combinatorial Nullstellensatz - conditions over a field, e.g. modulo $p$.

## Conditions modulo $p^{d}$ and conditions modulo $p$

$p^{d}$-divisible subgraphs - conditions modulo $p^{d}$.

Combinatorial Nullstellensatz - conditions over a field, e.g. modulo $p$.

How could you reduce conditions modulo $p^{d}$ to conditions modulo $p$ ?

## Conditions modulo $p^{d}$ and conditions modulo $p$

$p^{d}$-divisible subgraphs - conditions modulo $p^{d}$.

Combinatorial Nullstellensatz - conditions over a field, e.g. modulo $p$.

How could you reduce conditions modulo $p^{d}$ to conditions modulo $p$ ?

$$
\sum x_{j} \equiv q\left(\bmod p^{d}\right) \quad \Longleftrightarrow \quad ? ? ? \quad(\bmod p)
$$

## Conditions modulo $p^{d}$ and conditions modulo $p$

$p^{d}$-divisible subgraphs - conditions modulo $p^{d}$.

Combinatorial Nullstellensatz - conditions over a field, e.g. modulo $p$.

How could you reduce conditions modulo $p^{d}$ to conditions modulo $p$ ?

$$
\begin{aligned}
& \sum x_{j} \equiv q\left(\bmod p^{d}\right) \quad \Longleftrightarrow \quad ? ? ? \quad(\bmod p) \\
& f(x) \equiv q\left(\bmod p^{d}\right) \quad \Longleftrightarrow \quad ? ? ? \quad(\bmod p)
\end{aligned}
$$

## Key observation through an example

In our paper, a new algebraic technique is presented to describe conditions modulo $p^{d}$ as conditions modulo $p$.

## Key observation through an example

In our paper, a new algebraic technique is presented to describe conditions modulo $p^{d}$ as conditions modulo $p$.

## Example

If $\left(x_{1}, x_{2}, x_{3}\right) \in\{0,1\}^{3}$, then

$$
x_{1}+x_{2}+x_{3} \equiv 1 \quad(\bmod 4)
$$

is equivalent to the system

$$
\begin{gathered}
x_{1}+x_{2}+x_{3} \equiv 1 \quad(\bmod 2) \\
x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \equiv 0 \quad(\bmod 2)
\end{gathered}
$$

## Key observation through an example

In our paper, a new algebraic technique is presented to describe conditions modulo $p^{d}$ as conditions modulo $p$.

## Example

If $\left(x_{1}, x_{2}, x_{3}\right) \in\{0,1\}^{3}$, then

$$
x_{1}+x_{2}+x_{3} \equiv 1 \quad(\bmod 4)
$$

is equivalent to the system

$$
\begin{gathered}
x_{1}+x_{2}+x_{3} \equiv 1 \quad(\bmod 2) \\
x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \equiv 0 \quad(\bmod 2)
\end{gathered}
$$

## Key observation through an example

In our paper, a new algebraic technique is presented to describe conditions modulo $p^{d}$ as conditions modulo $p$.

## Example

If $\left(x_{1}, x_{2}, x_{3}\right) \in\{0,1\}^{3}$, then

$$
x_{1}+x_{2}+x_{3} \equiv 1 \quad(\bmod 4)
$$

is equivalent to the system

$$
\begin{gathered}
x_{1}+x_{2}+x_{3} \equiv 1 \quad(\bmod 2) \\
x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \equiv 0 \quad(\bmod 2)
\end{gathered}
$$

This example can be extended to any polynomial $f$ and prime power $p^{d}$.

## Combinatorial Nullstellensatz MOD 2

In the rest of this presentation, we focus on PPA and the complexity of Combinatorial Nullstellensatz MOD 2.

Theorem (Combinatorial Nullstellensatz MOD 2)
Let $f \in \mathbb{F}_{2}\left[x_{1}, \ldots x_{m}\right]$ be an m-variable polynomial. Suppose that the degree of $f$ is $m$ and that the coefficient of $x_{1} x_{2} \ldots x_{m}$ is nonzero. Then, there exists an $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in\{0,1\}^{m}$ such that $f\left(s_{1}, s_{2}, \ldots, s_{m}\right) \neq 0$.

The complexity of finding such a vector whose existence is guaranteed by the Combinatorial Nullstellensatz depends on the input form of the given polynomial.

The complexity of finding such a vector whose existence is guaranteed by the Combinatorial Nullstellensatz depends on the input form of the given polynomial.
If the polynomial is given explicitly, as the sum of monomials, e.g. $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{2} x_{3}$

- one can trivially construct a polynomial time algorithm

The complexity of finding such a vector whose existence is guaranteed by the Combinatorial Nullstellensatz depends on the input form of the given polynomial.
If the polynomial is given explicitly, as the sum of monomials, e.g. $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{2} x_{3}$

- one can trivially construct a polynomial time algorithm

The complexity of finding such a vector whose existence is guaranteed by the Combinatorial Nullstellensatz depends on the input form of the given polynomial.

If the polynomial is given explicitly, as the sum of monomials, e.g. $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{2} x_{3}$

- one can trivially construct a polynomial time algorithm

If the polynomial is given as the sum of products of polynomials, e.g. $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}\right)^{3}+x_{1} x_{2} x_{3}$

- such as in the most of the applications

The complexity of finding such a vector whose existence is guaranteed by the Combinatorial Nullstellensatz depends on the input form of the given polynomial.

If the polynomial is given explicitly, as the sum of monomials, e.g. $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{2} x_{3}$

- one can trivially construct a polynomial time algorithm

If the polynomial is given as the sum of products of polynomials, e.g. $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}\right)^{3}+x_{1} x_{2} x_{3}$

- such as in the most of the applications
- not known to be solvable in polynomial time

The complexity of finding such a vector whose existence is guaranteed by the Combinatorial Nullstellensatz depends on the input form of the given polynomial.

If the polynomial is given explicitly, as the sum of monomials, e.g. $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{2} x_{3}$

- one can trivially construct a polynomial time algorithm

If the polynomial is given as the sum of products of polynomials, e.g. $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}\right)^{3}+x_{1} x_{2} x_{3}$

- such as in the most of the applications
- not known to be solvable in polynomial time
- an open question by Douglas West conjectures that the problem is in PPA

The complexity of finding such a vector whose existence is guaranteed by the Combinatorial Nullstellensatz depends on the input form of the given polynomial.

If the polynomial is given explicitly, as the sum of monomials, e.g. $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{2} x_{3}$

- one can trivially construct a polynomial time algorithm

If the polynomial is given as the sum of products of polynomials, e.g. $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}\right)^{3}+x_{1} x_{2} x_{3}$

- such as in the most of the applications
- not known to be solvable in polynomial time
- an open question by Douglas West conjectures that the problem is in PPA
- we verify this conjecture


## Reminder about Polynomial Parity Argument

In '94, Papadimitriou defined the complexity class Polynomial Parity Argument. A problem is in PPA if and only if it is reducible to the End Of The Line.


## Reminder about Polynomial Parity Argument

In '94, Papadimitriou defined the complexity class Polynomial Parity Argument. A problem is in PPA if and only if it is reducible to the End Of The Line.


## Reminder about Polynomial Parity Argument

In '94, Papadimitriou defined the complexity class Polynomial Parity Argument. A problem is in PPA if and only if it is reducible to the End Of The Line.


## Reminder about Polynomial Parity Argument

In '94, Papadimitriou defined the complexity class Polynomial Parity Argument. A problem is in PPA if and only if it is reducible to the End Of The Line.


## Reminder about Polynomial Parity Argument

In '94, Papadimitriou defined the complexity class Polynomial Parity Argument. A problem is in PPA if and only if it is reducible to the End Of The Line.


## Reminder about Polynomial Parity Argument

In '94, Papadimitriou defined the complexity class Polynomial Parity Argument. A problem is in PPA if and only if it is reducible to the End Of The Line.


## Reminder about Polynomial Parity Argument

In '94, Papadimitriou defined the complexity class Polynomial Parity Argument. A problem is in PPA if and only if it is reducible to the End Of The Line.


## The pairing function

Papadimitriou shows that this problem is equivalent to the problem in which the nodes may have more (e.g. exponentially many) neighbours and a polynomial time pairing function is given.

## The pairing function

Papadimitriou shows that this problem is equivalent to the problem in which the nodes may have more (e.g. exponentially many) neighbours and a polynomial time pairing function is given.
Pairing function $\phi$ for an input node $v$ pairs up its neighbours.

## The pairing function

Papadimitriou shows that this problem is equivalent to the problem in which the nodes may have more (e.g. exponentially many) neighbours and a polynomial time pairing function is given.
Pairing function $\phi$ for an input node $v$ pairs up its neighbours.
For an even-degree node:


For an odd-degree node:


## PPA membership of Chévalley's theorem

## Theorem (Chévalley)

Let $p_{1}, p_{2}, \ldots, p_{n}$ be polynomials in $m$ variables over $\{0,1\}$. Suppose that $\sum_{i=1}^{n} \operatorname{deg}\left(p_{i}\right)<m$. Then, the number of common solutions of the polynomial equation system $p_{i}\left(x_{1}, \ldots, x_{m}\right)=0(i=1 \ldots n)$ is even. In particular, if there is a solution, there exists another.

## PPA membership of Chévalley's theorem

## Theorem (Chévalley)

Let $p_{1}, p_{2}, \ldots, p_{n}$ be polynomials in $m$ variables over $\{0,1\}$. Suppose that $\sum_{i=1}^{n} \operatorname{deg}\left(p_{i}\right)<m$. Then, the number of common solutions of the polynomial equation system $p_{i}\left(x_{1}, \ldots, x_{m}\right)=0(i=1 \ldots n)$ is even. In particular, if there is a solution, there exists another.

## Chévalley MOD 2

Input: polynomials $p_{1}, p_{2}, \ldots, p_{n}$ over $\{0,1\}$ such that $\sum_{i=1}^{n} \operatorname{deg}\left(p_{i}\right)<m$. Also, we are given a root $\left(c_{1}, c_{2}, \ldots, c_{m}\right) \in\{0,1\}^{m}$ of the equation system $p_{i}(\mathrm{x})=0(i=1, \ldots, n)$
Find: another root of the equation system $p_{i}(\mathbf{x})=0(i=1, \ldots, n)$.

## PPA membership of Chévalley's theorem

## Theorem (Chévalley)

Let $p_{1}, p_{2}, \ldots, p_{n}$ be polynomials in $m$ variables over $\{0,1\}$. Suppose that $\sum_{i=1}^{n} \operatorname{deg}\left(p_{i}\right)<m$. Then, the number of common solutions of the polynomial equation system $p_{i}\left(x_{1}, \ldots, x_{m}\right)=0(i=1 \ldots n)$ is even. In particular, if there is a solution, there exists another.

## Chévalley MOD 2

Input: polynomials $p_{1}, p_{2}, \ldots, p_{n}$ over $\{0,1\}$ such that $\sum_{i=1}^{n} \operatorname{deg}\left(p_{i}\right)<m$. Also, we are given a root $\left(c_{1}, c_{2}, \ldots, c_{m}\right) \in\{0,1\}^{m}$ of the equation system $p_{i}(\mathrm{x})=0(i=1, \ldots, n)$
Find: another root of the equation system $p_{i}(\mathbf{x})=0(i=1, \ldots, n)$.

## PPA membership of Chévalley's theorem

## Theorem (Chévalley)

Let $p_{1}, p_{2}, \ldots, p_{n}$ be polynomials in $m$ variables over $\{0,1\}$. Suppose that $\sum_{i=1}^{n} \operatorname{deg}\left(p_{i}\right)<m$. Then, the number of common solutions of the polynomial equation system $p_{i}\left(x_{1}, \ldots, x_{m}\right)=0(i=1 \ldots n)$ is even. In particular, if there is a solution, there exists another.

## Chévalley MOD 2

Input: polynomials $p_{1}, p_{2}, \ldots, p_{n}$ over $\{0,1\}$ such that $\sum_{i=1}^{n} \operatorname{deg}\left(p_{i}\right)<m$. Also, we are given a root $\left(c_{1}, c_{2}, \ldots, c_{m}\right) \in\{0,1\}^{m}$ of the equation system $p_{i}(\mathrm{x})=0(i=1, \ldots, n)$
Find: another root of the equation system $p_{i}(\mathbf{x})=0(i=1, \ldots, n)$.

Papadimitriou showed that Chévalley MOD 2 belongs to PPA. Our following proof about Combinatorial Nullstellensatz is based on his proof but it requires trickier pairing function.

## The construction of End Of The Line graph



The input polynomial: $f=\sum_{i=1}^{k}\left(\prod_{j=1}^{m_{i}} p_{i j}\right)$.

## The construction of End Of The Line graph



The input polynomial: $f=\sum_{i=1}^{k}\left(\prod_{j=1}^{m_{i}} p_{i j}\right)$.
It has $k$ blocks: $\prod_{j=1}^{m_{1}} p_{1 j}, \prod_{j=1}^{m_{2}} p_{2 j}, \ldots, \prod_{j=1}^{m_{k}} p_{k j}$.

## The construction of End Of The Line graph



Monomials of a block

The input polynomial: $f=\sum_{i=1}^{k}\left(\prod_{j=\mathbf{1}}^{m_{i}} p_{i j}\right)$.
It has $k$ blocks: $\prod_{j=1}^{m_{1}} p_{1 j}, \prod_{j=1}^{m_{2}} p_{2 j}, \ldots, \prod_{j=1}^{m_{k}} p_{k j}$.
A monomial (term) in the $i$ th block can be represented by an $\left(m_{i}+1\right)$-tuple of integers: $\left(i, a_{i, 1}, \ldots, a_{i, m_{i}}\right) . a_{i, j}$ shows that the term is the product of $a_{i, j}$ th monomials of $p_{i j}$.
E.g. in $\left(1+x_{1}\right)\left(1+x_{2}\right)(i, 1,1) \sim 1,(i, 1,2) \sim x_{2},(i, 2,1) \sim x_{1},(i, 2,2) \sim x_{1} x_{2}$.

## The construction of End Of The Line graph

All vectors in $\{0,1\}^{m}$


Blocks of the input polynomial f
Monomials of a block.

## The construction of End Of The Line graph



Monomials of a block

Edges:
A vector $x$ is connected to a term $t$ if and only if the value of $t$ is 1 at $x$.

## The construction of End Of The Line graph



Monomials of a block.

For a vector $\left(s_{1}, s_{2}, \ldots, s_{m}\right), f\left(s_{1}, s_{2}, \ldots, s_{m}\right) \neq 0$ holds if and only if in the constructed graph its degree is odd.
The degree of a term $t(\mathbf{x}) \neq x_{1} \ldots x_{m}$ is even because there exists a variable $x_{i}$ not appearing in $t$. The degree of term term $x_{1} \ldots x_{m}$ is odd because it is connected only to the vector $(1,1, \ldots, 1)$.
The standard leaf is the term $x_{1} \ldots x_{m}$. Another leaf is a solution.

## Pairing for a term $t$

However, the nodes of this graph have exponentially large degrees, and therefore we must exhibit a pairing function between the edges out of a node.

## Pairing for a term $t$

However, the nodes of this graph have exponentially large degrees, and therefore we must exhibit a pairing function between the edges out of a node.


For a term $t$

For a node corresponding to the term $t(\mathbf{x}) \neq x_{1} x_{2} \ldots x_{m}$, we pair up the vector $\mathbf{x}$ via the variable $x_{l}$ is such that does not appear in $t$.

## Pairing at a vector $x$

For the vector $x$


Suppose that $f(\mathbf{x})=0$. The case $f(\mathbf{x})=1$ can be checked similarly.

## Pairing at a vector $x$

For the vector $x$


## Pairing at a vector $x$



For a block $g=\prod_{j=1}^{m_{i}} p_{i j}$ such that $g(\mathbf{x})=0$, then there is an index $j$ such that $p_{i j}(\mathbf{x})=0$. Pick the smallest such $j$. There is an even number of monomials of $p_{i j}$ such that $p_{i j}(\mathbf{x})=1$. We pair these monomials by a pairing function $\phi_{i}$.
Then the mate of term $\left(i, a_{i 1}, \ldots, a_{i j}, \ldots, a_{i, m_{i}}\right)$ is $\left(i, a_{i 1}, \ldots, \phi_{i}\left(a_{i j}\right), \ldots, a_{i, m_{i}}\right)$.

## Pairing at a vector $x$

For the vector $x$


## Pairing at a vector $x$

For the vector $x$


For a block $g=\prod_{j=1}^{m_{i}} p_{i j}$ such that $g(\mathbf{x})=1$, then for all index $j$, that $p_{i j}(\mathbf{x})=1$ holds. We can pair all but one monomials of $p_{i j}$ with $p_{i j}(\mathbf{x})=1$ by a pairing function $\phi_{i j}$. One of them does not have a mate, denote its index by $\omega_{i j}$.

## Pairing at a vector $x$



For a block $g=\prod_{j=1}^{m_{i}} p_{i j}$ such that $g(\mathbf{x})=1$, then for all index $j$, that $p_{i j}(\mathbf{x})=1$ holds. We can pair all but one monomials of $p_{i j}$ with $p_{i j}(\mathbf{x})=1$ by a pairing function $\phi_{i j}$. One of them does not have a mate, denote its index by $\omega_{i j}$. If there exists an index $j$ such that $a_{i j} \neq \omega_{i j}$, pick the smallest such $j$. Then the mate of $\left(i, a_{i 1}, \ldots, a_{i, m_{i}}\right)$ is $\left(i, a_{i 1}, \ldots, \phi_{i j}\left(a_{i j}\right), \ldots, a_{i, m_{i}}\right)$.

## Pairing at a vector $x$



What about the term $t$ if it is represented by $\left(i, \omega_{i 1}, \ldots, \omega_{i, m_{i}}\right)$ ?

## Pairing at a vector $x$



What about the term $t$ if it is represented by $\left(i, \omega_{i 1}, \ldots, \omega_{i, m_{i}}\right)$ ?
Since $f(\mathbf{x})=0$, there is an even number of blocks that are 1 at $\mathbf{x}$. We pair these blocks by a pairing function $\phi$.

## Pairing at a vector $x$

For the vector $x$


What about the term $t$ if it is represented by $\left(i, \omega_{i 1}, \ldots, \omega_{i, m_{i}}\right)$ ?
Since $f(\mathbf{x})=0$, there is an even number of blocks that are 1 at $\mathbf{x}$. We pair these blocks by a pairing function $\phi$.
Then, the mate of $\left(i, \omega_{i 1}, \ldots, \omega_{i, m_{i}}\right)$ is $\left(\phi(i), \omega_{\phi(i), 1}, \ldots, \omega_{\phi(i), m_{\phi(i)}}\right)$.

## Pairing at a vector $x$



The key idea is this upper-level pairing function which pair up such blocks.

## Pairing at a vector $x$



The key idea is this upper-level pairing function which pair up such blocks.
So, we presented a polynomial algorithm that computes the mate of an edge out of a node, and therefore we reduced Combinatorial Nullstellensatz MOD 2 to the End Of The Line, so the proof is complete.
$2^{d}$-divisible subgraph.
Input: a positive integer $d$ and a graph $G=(V, E)$, where $|V|=n$, $|E|=m$ and $m>n \cdot\left(2^{d}-1\right)-2^{d-1}$.
Find: a $2^{d}$-divisible subgraph, that is, an $\emptyset \neq F \subseteq E$ such that for every $v \in V$, the number of incident edges of $F$ is divisible by $2^{d}$.
$2^{d}$-divisible subgraph.
Input: a positive integer $d$ and a graph $G=(V, E)$, where $|V|=n$, $|E|=m$ and $m>n \cdot\left(2^{d}-1\right)-2^{d-1}$.
Find: a $2^{d}$-divisible subgraph, that is, an $\emptyset \neq F \subseteq E$ such that for every $v \in V$, the number of incident edges of $F$ is divisible by $2^{d}$.

## Theorem

Finding a $2^{d}$-divisible subgraph is polynomially reducible to Combinatorial Nullstellensatz, hence it belongs to PPA.

## Thank you for your attention!

# Thank you for your attention! 

László Varga<br>Institute of Mathematics, Eötvös Loránd University, Budapest LVarga@cs.elte.hu

