Strategic Characterization of the Index of an Equilibrium

Arndt von Schemde

Bernhard von Stengel

Department of Mathematics London School of Economics

Battle of the sexes with in-laws

Battle of the sexes with in-laws she opera with football opera her mom he 2 0 1 football 0 4 1 0 4 5 opera 0 2 0

Battle of the sexes with in-laws she opera with football opera her mom he 2 0 1 football 0 4 1 0 4 5 opera 0 2 0

Make NE unique by adding strategies

Given:

nondegenerate (A,B), Nash equilibrium (NE) (x,y).

Question:

Is there a game G *extending* (A,B) by adding strategies so that (x,y) is the **unique** NE of G?

e.g.: G obtained from (A,B) by adding *columns*, (x,y) becoming (x,[y, 0,0,...,0]) for G.

Make NE unique by adding strategies

Given:

nondegenerate (A,B), Nash equilibrium (NE) (x,y).

Question:

Is there a game G *extending* (A,B) by adding strategies so that (x,y) is the **unique** NE of G?

e.g.: G obtained from (A,B) by adding *columns*, (x,y) becoming (x,[y, 0,0,...,0]) for G.

- can be done for **pure**-strategy NE
- but not for **mixed** NE of "battle of the sexes"

Strategic characterization of the index

We will show a conjecture by Josef Hofbauer:

Theorem:

For nondegenerate (A,B), Nash equilibrium (x,y):

```
index (x,y) = +1
```

```
\Leftrightarrow \exists game G extending (A,B) \\ so that (x,y) is the unique equilibrium of G.
```

for m x n game: G obtained from (A,B) by adding 3m columns.

Sub-matrices of equilibrium supports

Given: nondegenerate (A,B), A>0, B>0, Nash equilibrium (x,y).

 $A = (a_{ij}), B = (b_{ij})$

$$\begin{array}{l} \mathsf{A}_{xy} = (\mathsf{a}_{ij}) \in \mathsf{supp}(x), j \in \mathsf{supp}(y) \\ \mathsf{B}_{xy} = (\mathsf{b}_{ij}) \in \mathsf{supp}(x), j \in \mathsf{supp}(y) \end{array}$$

A_{xy}, B_{xy} have **full rank** |supp(x)|, nonzero determinants.

Index of an equilibrium (Shapley 1974)

Given: nondegenerate game (A,B), A>0, B>0,

Nash equilibrium (x,y).

index $(x,y) = (-1)^{|supp(x)|+1}$ sign det $(A_{xy} B_{xy})$

 $\in \{ +1, -1 \}$

Properties of the index

- independent of
 - positive constant added to all payoffs
 - order of pure strategies
 - pure strategy payoffs outside equilibrium support
- pure-strategy equilibria have index +1
- sum of indices over all equilibria is +1
- the two endpoints of any *Lemke-Howson path* are equilibria of opposite index.

Definition of symmetric index

Given: nondegenerate symmetric game (B^{T},B) , B>0,

SNE (symmetric Nash equilibrium) (x,x).

symmetric index (x,x) = $(-1)^{|supp(x)|+1}$ sign det(B_{xx})

 $\in \{ +1, -1 \}$

Symmetric NE of symmetric games

Only only of the dynamically stable, < not</pre>

symmetric Lemke–Howson paths

symmetric Lemke–Howson paths

Project to get Schlegel diagram $B = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 3 & 4 & 1 \\ 3 & 2 & 1 & 2 \end{bmatrix}$

Example: m=3 strategies for player 1

$$A = \begin{bmatrix} 0 & 10 & 0 & 10 \\ 10 & 0 & 0 & 0 \\ 8 & 0 & 10 & 8 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 10 & 0 & -10 \\ 0 & 0 & 10 & 8 \\ 10 & 0 & 0 & 8 \end{bmatrix}$$

1

Schlegel diagram for $\ensuremath{\mathsf{P}}^\Delta$

subdivide facet: player 1's best responses

Facets of P^A = potential equilibrium strategies of player 1

Each **facet** of P^{Δ}

= simplex spanned by m columns of $[-M I_m, B]$

Normal vector of facet

= mixed strategy of player 1

m columns

= best responses of player 2 or unused strategies of player 1

Subdivide facets into special best response regions of player 1

use	1	2	3	4	5	6	7
matrix B:	-M	0	0	0	10	0	-10
$P^{\Delta} = conv($	0	-M	0	0	0	10	8
	0	0	-M	10	0	0	8

	1	2	3	4	5	6	7
use	1	0	0	0	10	0	10
matrix A:	0	1	0	10	0	0	0
	0	0	1	8	0	10	8
	1						

Subdivide facets into special best response regions of player 1

 1	2	3		5	6	7
1	0	0	0	10	0	10
0	1	0	10	0	0	0
0	0	1	8	0	10	8

subdivide into best response regions

Subdivide facets into <u>special</u> best response regions of player 1

	1	2	3	_4	5	6	7	
	-M	0	0	0	10	0	-10	
$P^{\Delta} = conv($	0	-M	0	0	0	10	8)
	0	0	-M	10	0	0	8	

facet with unplayed strategy:

_1	2	3	4	5	6	7
1	0	0	0	10	0	10
0	1	0	10	0	0	0
0	0	1	8	0	10	8

unit vector for **slack variable**

subdivide facet using slack variables

subdivide facet using slack variables

Given: nondegenerate $m \times n$ game (A,B), $m \le n$.

Let $P^{\Delta} = \text{conv} [-M I_m, B]$, simplicial polytope.

Subdivide surface of P^{Δ} into regions with labels 1,...,m using columns of [I_m, A] that correspond to facets.

Given: nondegenerate $m \times n$ game (A,B), $m \le n$.

Let $P^{\Delta} = \text{conv} [-M I_m, B]$, simplicial polytope.

Subdivide surface of P^{Δ} into regions with labels 1,...,m using columns of $[I_m, A]$ that correspond to facets.

Equilibrium (x,y)

= point f(y) on facet corresponding to x,
 vertices = best responses player 2

with **all labels** 1,...,m = best responses player 1

Given: nondegenerate $m \times n$ game (A,B), $m \le n$.

Let $P^{\Delta} = \text{conv} [-M I_m, B]$, simplicial polytope.

Subdivide surface of P^{Δ} into regions with labels 1,...,m using columns of $[I_m, A]$ that correspond to facets.

Equilibrium (x,y) = point f(y) on facet corresponding to x, vertices = best responses player 2, unused strategies player 1 with all labels 1,...,m = best responses player 1, slacks (=worse pay) for unused strategies.

Equilibria have all m labels

Index = orientation

Lemke–Howson paths

Opposite index of endpoints

Completely mixed NE of 3x3 coordination game made unique

B =

Α

Adding new columns: polytope view

Summary

Dual construction

- Points = payoff columns (replies) of player 2
- Facet subdivision = player 1's best replies
- Visualization and characterization of index
- Illustration of L-H algorithm
- Low dimension m-1, for any n

Other applications

- Components of equilibria, hyperstability
- Fixed point theorems, Sperner's lemma via bimatrix games

Summary

Dual construction

- Points = payoff columns (replies) of player 2
- Facet subdivision = player 1's best replies
- Visualization and characterization of index
- Illustration of L-H algorithm
- Low dimension m-1, for any n

Other applications

- Components of equilibria, hyperstability
- Fixed point theorems, Sperner's lemma
 via bimatrix games (use for PPAD completeness?)