Strategic Characterization of the Index of an Equilibrium

Arndt von Schemde

Bernhard von Stengel

Department of Mathematics
London School of Economics

Battle of the sexes

Battle of the sexes with in-laws

Make NE unique by adding strategies

Given:
nondegenerate (A,B), Nash equilibrium (NE) (x, y).
Question:
Is there a game G extending (A, B) by adding strategies so that (x, y) is the unique NE of G ?
e.g.: G obtained from (A, B) by adding columns, (x, y) becoming ($x,[y, 0,0, \ldots, 0]$) for G.

Make NE unique by adding strategies

Given:
nondegenerate (A,B), Nash equilibrium (NE) (x,y).
Question:
Is there a game G extending (A, B) by adding strategies so that (x, y) is the unique NE of G ?
e.g.: G obtained from (A, B) by adding columns, (x, y) becoming ($x,[y, 0,0, \ldots, 0]$) for G.

- can be done for pure-strategy NE
- but not for mixed NE of "battle of the sexes"

Strategic characterization of the index

We will show a conjecture by Josef Hofbauer:

Theorem:

For nondegenerate (A,B), Nash equilibrium (x, y):

$$
\text { index }(x, y)=+1
$$

$\Leftrightarrow \quad \exists$ game G extending (A,B)
so that (x, y) is the unique equilibrium of G.
for $m \times n$ game:
G obtained from (A, B) by adding 3 m columns.

Sub-matrices of equilibrium supports

Given: nondegenerate $(A, B), A>0, B>0$, Nash equilibrium (x, y).

$$
\begin{aligned}
& A=\left(a_{i j}\right), B=\left(b_{i j}\right) \\
& A_{x y}=\left(a_{i j}\right) i \in \operatorname{supp}(x), j \in \operatorname{supp}(y) \\
& B_{x y}=\left(b_{i j}\right) \quad i \in \operatorname{supp}(x), j \in \operatorname{supp}(y)
\end{aligned}
$$

Axy, $B_{x y}$ have full rank |supp(x)|, nonzero determinants.

Index of an equilibrium (Shapley 1974)

Given: nondegenerate game $(A, B), \quad A>0, B>0$,
Nash equilibrium (x, y).
index $(x, y)=(-1)|\operatorname{supp}(x)|+1$ sign $\operatorname{det}\left(A_{x y} B_{x y}\right)$

$$
\in\{+1,-1\}
$$

Properties of the index

- independent of
- positive constant added to all payoffs
- order of pure strategies
- pure strategy payoffs outside equilibrium support
- pure-strategy equilibria have index +1
- sum of indices over all equilibria is +1
- the two endpoints of any Lemke-Howson path are equilibria of opposite index.

Definition of symmetric index

Given: nondegenerate symmetric game $\left(B^{\top}, B\right), \quad B>0$, SNE (symmetric Nash equilibrium) (x, x).
symmetric index $(x, x)=(-1)^{|\operatorname{supp}(x)|+1} \operatorname{sign} \operatorname{det}\left(B_{x x}\right)$

$$
\in\{+1,-1\}
$$

Symmetric NE of symmetric games

best-reply regions

symmetric equilibria

symmetric equilibria

symmetric equilibria

symmetric equilibria

Only ■dynamically stable, \triangleleft not

best-reply regions

best-reply regions

best-reply regions

symmetric Lemke-Howson paths

symmetric Lemke-Howson paths

Points instead of best-reply regions

$\left.B=$| 3 | 4 | 5 |
| :--- | :--- | :--- |
| 1 | 3 | 4 |
| 3 | 2 | 1 | \right\rvert\,

Mixed strategies of player 1

Non-negative convex hull

Use negative unit vectors instead

Use negative unit vectors instead

Project to get Schlegel diagram

Project to get Schlegel diagram

Project to get Schlegel diagram

$$
\left.B=\begin{array}{|lll}
3 & 4 & 5 \\
1 & 3 & 4 \\
3 & 2 & 1
\end{array} \right\rvert\,
$$

Example: m=3 strategies for player 1

$$
\left.\begin{array}{c}
\left.A=\begin{array}{|cccc}
0 & 10 & 0 & 10 \\
10 & 0 & 0 & 0 \\
8 & 0 & 10 & 8
\end{array}\right] \\
\left.B=\begin{array}{|cccc}
0 & 10 & 0 & -10 \\
0 & 0 & 10 & 8 \\
10 & 0 & 0 & 8
\end{array}\right] \\
P^{\Delta}=\operatorname{conv}\left(\begin{array}{ccccc}
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\
-\mathrm{M} & \mathbf{6} & \mathbf{7} \\
0 & -\mathrm{M} & 0 & 0 & 10 \\
0 & 0 & -10 \\
0 & 0 & -\mathrm{M} & 10 & 0 \\
10 & 8 \\
\hline
\end{array}\right.
\end{array}\right), \quad \mathrm{M} \text { large }, \quad . \quad .
$$

Schlegel diagram for \mathbf{P}^{Δ}

subdivide facet: player 1's best responses

Facets of $\mathbf{P}^{\Delta}=$ potential equilibrium strategies of player 1

Each facet of P^{Δ}

$=$ simplex spanned by m columns of $[-\mathrm{M} \mathrm{Im}, \mathrm{B}]$
Normal vector of facet
$=$ mixed strategy of player 1
m columns
$=$ best responses of player 2 or unused strategies of player 1

Subdivide facets into special best response regions of player 1

$\left.\begin{array}{l|ccccccc}\text { use } & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\ \text { matrix } \mathrm{B}: & -\mathrm{M} & 0 & 0 & 0 & 10 & 0 & -10 \\ \mathrm{P}^{\Delta}=\operatorname{conv}(& -M & 0 & 0 & 0 & 10 & 8 \\ 0 & 0 & -\mathrm{M} & 10 & 0 & 0 & 8\end{array}\right)$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
use	$\mathbf{1}$	0	0	0	10	0	10
0	1	0	10	0	0	0	
0	0	1	8	0	10	8	

Subdivide facets into special best response regions of player 1

$$
\left.\mathrm{P}^{\Delta}=\operatorname{conv}\left(\begin{array}{ccc|ccc|c}
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\
-\mathrm{M} & 0 & 0 & 0 & 10 & 0 & -10 \\
0 & -\mathrm{M} & 0 & 0 & 0 & 10 & 8 \\
0 & 0 & -\mathrm{M} & 10 & 0 & 0 & 8
\end{array}\right]\right) \quad \text { facet }
$$

subdivide into
best response
regions

Subdivide facets into special best response regions of player 1

$$
\mathrm{P}^{\Delta}=\operatorname{conv}\left(\begin{array}{c|cc|ccc|c|}
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\
-\mathrm{M} & 0 & 0 & 0 & 10 & 0 & -10 \\
\mathbf{0} & -\mathrm{M} & 0 & 0 & 0 & 10 & 8 \\
\mathbf{0} & 0 & -\mathrm{M} & 10 & 0 & 0 & 8 \\
\hline
\end{array}\right) \quad \begin{aligned}
& \text { facet with } \\
& \text { unplayed } \\
& \text { strategy: }
\end{aligned}
$$

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	0	0	0	10	0	10
$\mathbf{0}$	1	0	10	0	0	0
$\mathbf{0}$	0	1	8	0	10	8

unit vector for slack variable

subdivide facet using slack variables

equilibrium iff all labels 1...m

subdivide facet using slack variables

equilibrium iff all labels 1...m
4/35 $\quad 1 / 35 \quad 30 / 35$

$\begin{array}{r} 4 / 5 \quad 1 / 5 \quad 0 \\ \text { (4) } 7 \text { (1) } \end{array}$				2	40/35
(1)	0	10	1		
(2)	10	0	0	8	40/35
(3)	8	8	0	8	40/35

The full dual construction

Given: nondegenerate $m \times n$ game $(A, B), m \leq n$.
Let $\mathrm{P}^{\Delta}=\operatorname{conv}[-\mathrm{M} \mathrm{Im}, \mathrm{B}]$, simplicial polytope.
Subdivide surface of P^{Δ} into regions with labels $1, \ldots, \mathrm{~m}$ using columns of [Im, A] that correspond to facets.

The full dual construction

Given: nondegenerate $m \times n$ game $(A, B), m \leq n$.
Let $\mathrm{P}^{\Delta}=\operatorname{conv}[-\mathrm{M} \mathrm{Im}, \mathrm{B}]$, simplicial polytope.
Subdivide surface of P^{Δ} into regions with labels $1, \ldots, \mathrm{~m}$ using columns of $[\mathrm{Im}, \mathrm{A}]$ that correspond to facets.

Equilibrium (x, y)
$=$ point $f(y)$ on facet corresponding to x, vertices $=$ best responses player 2
with all labels $1, \ldots, \mathrm{~m}=$
best responses player 1

The full dual construction

Given: nondegenerate $m \times n$ game $(A, B), m \leq n$.
Let $\mathrm{P}^{\Delta}=\operatorname{conv}[-\mathrm{M} \mathrm{Im}, \mathrm{B}]$, simplicial polytope.
Subdivide surface of P^{Δ} into regions with labels $1, \ldots, \mathrm{~m}$ using columns of $[\mathrm{Im}, \mathrm{A}]$ that correspond to facets.

Equilibrium (x, y)
$=$ point $f(y)$ on facet corresponding to x,
vertices $=$ best responses player 2 , unused strategies player 1
with all labels $1, \ldots, \mathrm{~m}=$
best responses player 1, slacks (=worse pay) for unused strategies.

The full dual construction

Equilibria have all m labels

Index = orientation

Lemke-Howson paths

Opposite index of endpoints

Completely mixed NE of 3×3 coordination game made unique

$$
\left.\mathrm{A}=\left\lvert\, \begin{array}{llllll}
2 & 1 & 1 & 0 & 0 & 1 \\
1 & 2 & 1 & 1 & 0 & 0 \\
1 & 1 & 2 & 0 & 1 & 0
\end{array}\right.\right]
$$

$$
\begin{array}{rrr|rrr}
2 & 1 & 1 & 2.8 & 0.8 & -0.4 \\
1 & 2 & 1 & -0.4 & 2.8 & 0.8 \\
1 & 1 & 2 & 0.8 & -0.4 & 2.8
\end{array}
$$

Adding new columns: polytope view

Summary

Dual construction

- Points = payoff columns (replies) of player 2
- Facet subdivision = player 1's best replies
- Visualization and characterization of index
- Illustration of L-H algorithm
- Low dimension m-1, for any n

Other applications

- Components of equilibria, hyperstability
- Fixed point theorems, Sperner's lemma via bimatrix games

Summary

Dual construction

- Points = payoff columns (replies) of player 2
- Facet subdivision = player 1's best replies
- Visualization and characterization of index
- Illustration of L-H algorithm
- Low dimension m-1, for any n

Other applications

- Components of equilibria, hyperstability
- Fixed point theorems, Sperner's lemma via bimatrix games (use for PPAD completeness?)

