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 Make NE unique by adding strategies

Given: 
nondegenerate (A,B),  Nash equilibrium (NE) (x,y).

Question:
Is there a game G extending  (A,B) by adding 
strategies so that (x,y) is the unique NE of G?

e.g.:  G obtained from (A,B) by adding columns,
(x,y) becoming  (x,[y, 0,0,...,0])  for G.



Make NE unique by adding strategies

Given: 
nondegenerate (A,B),  Nash equilibrium (NE) (x,y).

Question:
Is there a game G extending  (A,B) by adding 
strategies so that (x,y) is the unique NE of G?

e.g.:  G obtained from (A,B) by adding columns,
(x,y) becoming  (x,[y, 0,0,...,0])  for G.

•   can be done for pure-strategy NE

•   but not for mixed NE of “battle of the sexes”



Strategic characterization of the index

We will show a conjecture by Josef Hofbauer: 

Theorem: 

For nondegenerate (A,B),  Nash equilibrium (x,y):

  index (x,y) = +1

  game G extending  (A,B) 
so that (x,y) is the unique equilibrium of G.

for  m x n  game:  
G obtained from (A,B) by adding 3m columns.



Sub-matrices of equilibrium supports

Given: nondegenerate (A,B),   A>0,  B>0,
Nash equilibrium (x,y).

A = (aij),  B = (bij)

Axy = (aij) isupp(x), jsupp(y) 
Bxy = (bij) isupp(x), jsupp(y) 

Axy ,  Bxy     have full rank |supp(x)|,
nonzero determinants.



Index of an equilibrium (Shapley 1974)

Given: nondegenerate game (A,B),   A>0,  B>0,

Nash equilibrium (x,y).

index (x,y) = (1)|supp(x)|+1  sign det(Axy Bxy)

     { +1,  1 }



Properties of the index

 independent of
- positive constant added to all payoffs
- order of pure strategies
- pure strategy payoffs outside equilibrium support

 pure-strategy equilibria have index +1

 sum of indices over all equilibria is  +1

 the two endpoints of any Lemke-Howson path are
equilibria of opposite index.



Definition of symmetric index

Given: nondegenerate symmetric game (BT,B),    B>0,

SNE (symmetric Nash equilibrium) (x,x).

symmetric index (x,x) = (1)|supp(x)|+1  sign det(Bxx)

      { +1,  1 }
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Only notdynamically stable,
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symmetric Lemke−Howson paths
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symmetric Lemke−Howson paths
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 Points instead of best−reply regions
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Mixed strategies of player 1
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Non−negative convex hull
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Use negative unit vectors instead
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Project to get Schlegel diagram
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Example: m=3 strategies for player 1 

 0   10   0   10
A  = 10   0    0    0

 8    0   10   8

 0   10   0  -10
B  =  0    0   10   8

10   0    0    8

  1   2   3     4     5     6     7 

-M  0  0    0   10   0  -10

P= conv(   0 -M  0    0    0   10   8   ) ,         M large
           0  0 -M  10   0    0    8
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PSchlegel diagram for ∆
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Facets of P = potential equilibrium 
strategies of player 1

Each facet of P

= simplex spanned by  m  columns of  [-M Im, B]

Normal vector of facet
= mixed strategy of player 1

m  columns
= best responses of player 2

or unused strategies of player 1



Subdivide facets into special
best response regions of player 1

use         1   2   3     4     5     6     7 

matrix B:   -M  0  0    0   10   0  -10

P= conv(   0 -M  0    0    0   10   8   ) 
           0  0 -M  10   0    0    8

  1   2   3     4     5     6     7 

use   1  0  0    0   10   0   10
matrix A:    0  1  0   10   0    0    0
      0  0  1    8    0   10   8



Subdivide facets into special
best response regions of player 1

            1   2   3     4     5     6     7 

         -M  0  0    0   10   0  -10

P= conv(   0 -M  0    0    0   10   8   )  facet
           0  0 -M  10   0    0    8

 
  1   2   3     4     5     6     7 

   1  0  0    0   10   0   10 subdivide into
    0  1  0   10   0    0    0 best response
      0  0  1    8    0   10   8 regions



Subdivide facets into special
best response regions of player 1

            1   2   3     4     5     6     7 

         -M  0  0    0   10   0  -10 facet with

P= conv(   0 -M  0    0    0   10   8   ) unplayed
           0  0 -M  10   0    0    8 strategy:

 
  1   2   3     4     5     6     7 

  1  0  0    0   10   0   10 unit vector
   0  1  0   10   0    0    0 for slack
     0  0  1    8    0   10   8 variable
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The full dual construction

Given: nondegenerate m  n  game  (A,B),  m ≤ n .

Let P= conv [-M Im, B], simplicial polytope.

Subdivide surface of Pinto regions with labels 1,...,m
using columns of  [Im, A]  that correspond to facets.



The full dual construction

Given: nondegenerate m  n  game  (A,B),  m ≤ n .

Let P= conv [-M Im, B], simplicial polytope.

Subdivide surface of Pinto regions with labels 1,...,m
using columns of  [Im, A]  that correspond to facets.

Equilibrium (x,y)
= point  f(y)  on facet corresponding to x, 

vertices = best responses player 2 
 

with all labels 1,...,m =
best responses player 1 
 



The full dual construction

Given: nondegenerate m  n  game  (A,B),  m ≤ n .

Let P= conv [-M Im, B], simplicial polytope.

Subdivide surface of Pinto regions with labels 1,...,m
using columns of  [Im, A]  that correspond to facets.

Equilibrium (x,y)
= point  f(y)  on facet corresponding to x, 

vertices = best responses player 2, 
unused strategies player 1

with all labels 1,...,m =
best responses player 1,
slacks (=worse pay) for unused strategies.



The full dual construction
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Equilibria have all m labels
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Index = orientation
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Lemke−Howson paths
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Opposite index of endpoints
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Completely mixed NE of 3x3 
coordination game made unique

2  1  1    0     0     1
A  = 1  2  1    1     0     0

1  1  2    0     1     0

2  1  1   2.8  0.8 -0.4
B  = 1  2  1  -0.4  2.8  0.8

1  1  2   0.8 -0.4  2.8
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Adding new columns: polytope view
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Summary

Dual construction

 Points = payoff columns (replies) of player 2 

 Facet subdivision = player 1's best replies

 Visualization and characterization of index 

 Illustration of L-H algorithm

 Low dimension  m1,  for any  n

Other applications
 Components of equilibria,  hyperstability

 Fixed point theorems, Sperner's lemma 
   via bimatrix games 



Summary

Dual construction

 Points = payoff columns (replies) of player 2 

 Facet subdivision = player 1's best replies

 Visualization and characterization of index 

 Illustration of L-H algorithm

 Low dimension  m1,  for any  n

Other applications
 Components of equilibria,  hyperstability

 Fixed point theorems, Sperner's lemma 
   via bimatrix games (use for PPAD completeness?)


