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Make NE unique by adding strategies

Given:
nondegenerate (A,B), Nash equilibrium (NE) (x,y).

Question:

Is there a game G extending (A,B) by adding
strategies so that (x,y) is the unique NE of G?

e.qg.: G obtained from (A,B) by adding columns,
(x,y) becoming (x,[y, 0,0,...,0]) for G.



Make NE unique by adding strategies

Given:
nondegenerate (A,B), Nash equilibrium (NE) (x,y).

Question:

Is there a game G extending (A,B) by adding
strategies so that (x,y) is the unique NE of G?

e.qg.: G obtained from (A,B) by adding columns,
(x,y) becoming (x,[y, 0,0,...,0]) for G.

e can be done for pure-strategy NE

« but not for mixed NE of “battle of the sexes”



Strategic characterization of the index

We will show a conjecture by Josef Hofbauer:

Theorem:
For nondegenerate (A,B), Nash equilibrium (x,y):

index (x,y) = +1

< d game G extending (A,B)
so that (x,y) is the unique equilibrium of G.

for mx n game:
G obtained from (A,B) by adding 3m columns.




Sub-matrices of equilibrium supports

Given: nondegenerate (A,B), A>0, B>0,
Nash equilibrium (x,y).

A = (aij), B = (bij)
Axy = (aij) iesupp(x), jesuppl(y)
Bxy = (Dbij) iesupp(x), jesupp(y)

Axy , Bxy have full rank |supp(x)|,
nonzero determinants.



Index of an equilibrium (Shapley 1974)

Given: nondegenerate game (A,B), A>0, B>O0,

Nash equilibrium (x,y).

index (x,y) = (=1)Isupp(X)|+1 sign det(Axy Bxy)

e {+1, -1}



Properties of the index

iIndependent of

- positive constant added to all payoffs

- order of pure strategies

- pure strategy payoffs outside equilibrium support

pure-strategy equilibria have index +1
sum of indices over all equilibriais +1

the two endpoints of any Lemke-Howson path are
equilibria of opposite index.



Definition of symmetric index

Given: nondegenerate symmetric game (B',B), B>0,

SNE (symmetric Nash equilibrium) (x,x).

)|+1

symmetric index (x,x) = (=1)!5UPPXI*1 sign det(Bxx)

e {+1, -1}



Symmetric NE of symmetric games
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Only = dynamically stable, < not
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symmetric Lemke-Howson paths
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Points instead of best-reply regions
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Non-negative convex hull

NN P

3 5
1 3 4
B =
3 3 2 1




Use negative unit vectors instead
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Example: m=3 strategies for player 1
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subdivide facet: player 1°s best responses
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Facets of P* = potential equilibrium
strategies of player 1

Each facet of P2
simplex spanned by m columns of [-M Im, B]

Normal vector of facet
mixed strategy of player 1

m columns
best responses of player 2
or unused strategies of player 1



Subdivide facets into special
best response regions of player 1

use 123 4 5 6 7
matrixB: -M 0 0O O 10 0O -10
PA=conv( O-M 0 O O 10 8 )
O0-M 10 0 O 8
1 23 4 5 6 7
use 1 00 O 10 O 10
matrix A: 010 10 0O O O
O01 8 0 10 8




Subdivide facets into special
best response regions of player 1
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Subdivide facets into special
best response regions of player 1

123 4 5 6 7
-M[{0 00|10 O]-10 facet with
PA=conv(|O}M 0| 0O| O 10[ 8]) unplayed
0j|0-M 101 O O] 8 strategy:
123 4 5 6 7
1{0 O |O |10 O |10 unit vector
O|1 0 |10{0 0 ]O for slack
OO 1 |80 108 variable




subdivide facet using slack variables

-equilibrium iff
all labels 1...m
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subdivide facet using slack variables

-equilibrium iff
all labels 1...m
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The full dual construction
Given: nondegenerate mxn game (A,B), m<n.
Let P2 = conv [-M Im, B], simplicial polytope.

Subdivide surface of P2into regions with labels 1,...,m
using columns of [Im, A] that correspond to facets.
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Let P2 = conv [-M Im, B], simplicial polytope.

Subdivide surface of P2into regions with labels 1,...,m
using columns of [Im, A] that correspond to facets.

Equilibrium (x,y)
= point f(y) on facet corresponding to x,
vertices = best responses player 2

with all labels 1,....m =
best responses player 1



The full dual construction
Given: nondegenerate mxn game (A,B), m<n.
Let P2 = conv [-M Im, B], simplicial polytope.

Subdivide surface of P2into regions with labels 1,...,m
using columns of [Im, A] that correspond to facets.

Equilibrium (x,y)
= point f(y) on facet corresponding to x,
vertices = best responses player 2,
unused strategies player 1
with all labels 1,....m =
best responses player 1,
slacks (=worse pay) for unused strategies.



The full dual construction




Equilibria have all m labels




Index = orientation




Lemke-Howson paths




Opposite index of endpoints




Completely mixed NE of 3x3
coordination game made unique

211 0 0 1
= 121 1 0 O
112 0 1 O
211 28 0.8-0.4
= 1 21-04 28 0.8
112 08-04 2.8
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Adding new columns: polytope view
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Summary

Dual construction

e Points = payoff columns (replies) of player 2
e Facet subdivision = player 1's best replies

e Visualization and characterization of index
e |llustration of L-H algorithm

e Low dimension m-1, forany n

Other applications
e Components of equilibria, hyperstability

e Fixed point theorems, Sperner's lemma
via bimatrix games



Summary

Dual construction

e Points = payoff columns (replies) of player 2
e Facet subdivision = player 1's best replies

e Visualization and characterization of index
e |llustration of L-H algorithm

e Low dimension m-1, forany n

Other applications
e Components of equilibria, hyperstability

e Fixed point theorems, Sperner's lemma
via bimatrix games (use for PPAD completeness?)



