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Overview

An introduction to computational complexity,
two open problems and a result on 
equilibrium computation:

- solving simple stochastic games 

- finding a Nash equilibrium of a bimatrix game:

long Lemke-Howson paths 

[joint with Rahul Savani ]



Computational complexity

Computational complexity of a problem =
running time as function of input size n
(n = bits required to specify problem instance).

Decision problems = decide  "yes" or "no"

Example:

Perfect matching
Input: Bipartite graph G (list of edges).
Question: Does G have a perfect matching?



Finding a perfect matching



Finding a perfect matching



Perfect matching?



"no" -  certificate



The complexity class NP
"nondeterministic polynomial time"

A decision problem belongs to NP
if a "yes" answer can be verified quickly,
that is, in polynomial time with the help of a 
nondeterministically found short "certificate".

Example:

Perfect matching  ∈ NP,
("yes"-)certificate = set of matched edges.



The complexity class co-NP

A decision problem belongs to co-NP
if a "no" answer can be verified quickly.

Example: 

Perfect matching  ∈ co-NP,
"no"-certificate = node set  A  so that

|{ b : a ∈A,  (a,b) is an edge }| < |A| ,

which exists if the graph has no perfect matching 
by Hall's marriage theorem.



The complexity class P
"polynomial time"

A decision problem belongs to P

if it can be decided ("yes" or "no") quickly,

that is, in polynomial time O(nk) for input size n, 

for some constant  k.

(Typically small  k,  e.g.  k=3).



Perfect matching is in P

Input: Bipartite graph with  n  nodes on each side.
Output: Perfect matching, or "no"-certificate A.

Augmenting-path algorithm:
 time

for each unmatched node  v  × n 

- find augmenting path from v  O(n2)

- flip matched and unmatched edges

overall:  O(n3)



Start with unmatched node



Find unmatched node



Get matched edge



Next unmatched node



Find matched node



Go back along matched edge



Find unmatched node



Flip edges



Next unmatched node



Find unmatched node



Flip edge



Next unmatched node



Find matched node



Go back along matched edge



Find unmatched node



Flip edges, done



Sitting friends around a table



= finding a Hamiltonian cycle



Hamiltonian cycle, ∈ NP



Hamiltonian cycle?



Complexity of Hamiltonian cycle

Input: Graph G

Question: Does G have a Hamiltonian cycle?
(= cycle that visits each node once)

Hamiltonian cycle is [widely believed to be]
not in co-NP.

[Karp 1975]:
Hamiltonian cycle is NP-complete.



NP-complete problems

A decision problem is NP-complete
if it is in NP, and if every problem in NP
can in polynomial time be reduced to it.

If an NP-complete problem is in P, then 

NP = P
(the $1,000,000 question, 

[ widely believed:  NP ≠ P , NP ≠ co-NP ] ).

See: Garey / Johnson, Computers and Intractability:
A Guide to Theory of NP-completeness [1979].



Exponential algorithms

The only known algorithms to decide 

NP-complete problems of size n are exponential, 

with running time   cn   for  c > 1.

Why not use brute force?

E.g. try out all  n!  permutations of nodes for 

Hamiltonian path?   





Why polynomial time?

Polynomial time algorithms scale well,

e.g. O(n3) algorithm:

input size increases from  n  to  2n

⇒
running time increases from cn3 to  8cn3 



NP

The complexity classes

co−NPP



NP

The complexity classes

co−NPP

Matrix games

Primes



NP

The complexity classes

co−NPP

Matrix games

Primes

Simple stochastic games   



Matrix games in NP ∩ co-NP

Input: Integer matrix  A, rational number  q

Question: Does the zero-sum matrix game A
have value  ≥ q?

In NP / co-NP with mixed strategies for

maximizer / minimizer as certificates.

In P via polynomial-time linear programming 

algorithm [Khachiyan 1979]



Primes in NP ∩ co-NP 

Input: Integer  x  with  n  digits

Question: Is x prime?

In co-NP: factors as certificate

In NP:  [Pratt 1975]

In P: [Agrawal / Kayal / Saxena 2004]

This is not factoring in polynomial time!



Game theoretic-problems in NP ∩ co-NP
but not known to be in P

Parity games: 
Used in logic and verification, equivalent to
model checking for modal mu-calculus.

Mean-payoff games:
Used in competitive analysis of online algorithms.

Simple stochastic games:
More general than both.



Simple stochastic game

0 1two sinks:
controlled by
min

averaging
node

w.l.o.g. [Condon 1992]: stopping game (ends with prob. 1)

prob 1/2

prob 1/2

controlled by
max

= directed graph with

out−degree−2 nodes:



Simple stochastic game

1

0



1

0

4/5

4/5
3/5

3/5 2/5   

2/52/5

Certificate: strategies and payoffs



Solving simple stochastic games

Input: Simple stochastic game, node  u,
rational number q

Question: When started at  u, does the game have 
value  ≥ q?

In NP / co-NP with pure Markov strategies for

max / min and a value for each node as certificates.

But: no polynomial-time algorithm known!



Strategy improvement algorithm

[Hoffman / Karp 1966]

Start with arbitrary strategy  s  of max

loop: Let  t  be best response of min to  s .

Let  s'  be obtained from  s  by switching 
all max-choices with better value(s,t).

if   s ≠ s'  repeat with  s ← s'

Each iteration quick, but number of iterations not 
known to be polynomial (nor exponential).



start with some max strategy  s

1

0



best response  t
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switch for max
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change to  s’

1
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best response  t’
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switch for max
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change to  s’’

1

0



(same) best response t’
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no change for max, done
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Recent progress

[Gärtner / Rüst 2005]

A simple stochastic game can be expressed as a
P-matrix LCP.

LCP = Linear Complementarity Problem

P-matrix: LCP has always unique solution.

Polynomial-time interior-point methods for some
P-matrix LCPs known [Ye 2002].



Finding a Nash equilibrium

Input: Bimatrix game (A,B).

Output : A Nash equilibrium (x,y).

This is a (NP) search problem.

The decision problem is trivial!



Finding a Nash equilibrium

Input: Bimatrix game (A,B).

Output : A Nash equilibrium (x,y).

This is a (NP) search problem.

No polynomial-time algorithm known!



Decision problems for Nash equilibria

[Gilboa / Zemel 1989]

The following problems are NP-complete:

Input: Bimatrix game, rational number q.

Question: Does the game have a Nash equilibrium 
with payoff  ≥ q to player 1?

Input: Bimatrix game.

Question: Does the game have a unique Nash 
equilibrium ?



Long Lemke-Howson paths

[Savani / von Stengel 2006]

The Lemke-Howson algorithm for finding one 

Nash equilibrium of a bimatrix game may take 

exponential time.



Nash equilibria of bimatrix games

3   3   1   0
A = 2   5 B =   0   2

0   6    4   3

Nash equilibrium =

pair of strategies  x , y  with

x  best response to  y  and
y  best response to  x.

   

 



Mixed equilibria

3   3   1   0
A = 2   5 B =   0   2

0   6    4   3

  0
x = 1/3 yT = 1/3   2/3

2/3

   3
Ay =    4      xTB =  8/3   8/3

   4
 

only pure best responses can have probability > 0



Best response polytope Q for player 2

= A
Q = { y | Ay≤1, y≥0 }©1
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©5 : y5 ≥ 0 }
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©1 : 3y4 + 3y5≤ 1
©2 : 2y4 + 5y5≤ 1
©3 : 6y5≤ 1
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B < 1P = { x |  x > 0,  x          }

x3

x1

x2

x3

x1

x2
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= B

Best response polytope P for player 1
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Equilibrium = completely labeled pair

pure equilibrium

    

2

3

5

4

4 1

2
31

5



Equilibrium = completely labeled pair    

2

mixed equilibrium
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The Lemke−Howson algorithm    
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The Lemke−Howson algorithm    
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The Lemke−Howson algorithm    
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Why Lemke-Howson works

LH finds at least one Nash equilibrium because

•    finitely many "vertices"

for nondegenerate (generic) games:

•    unique starting edge given missing label

•    unique continuation

precludes "coming back" like here:



Complexity of Lemke-Howson

−  finds at least one Nash equilibrium, 
    pivots like Simplex algorithm for linear programming

−  Simplex may be exponential [Klee-Minty cubes]

−  exponentially many steps of Lemke-Howson
    for any dropped label?

−  Yes!  This is our result.



Our result

There are  d × d  games with exactly one Nash 
equilibrium, for which the Lemke-Howson algorithm 

takes  ≥  φ 3d/4  many steps for any dropped label

(with Golden Ratio   φ = (5 + 1) / 2  = 1.618...)

We will show this using dual cyclic polytopes.
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1  0  0  0  1
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Dual cyclic polytopes

−  vertices = strings of n bits with d bits "1",

−  no odd substrings  010,  01110,  0111110, . . .  
     [Gale evenness]

Example:    d=4, n=6  d=2, n=6 (4 × 2 game)
111100 000011 
111001 000110
110110 001100
110011 011000
101101 110000
100111 100001
011110
011011
001111



Permuted labels

P = dual cyclic polytope in dimension d with 2d facets

with facets labeled

?

©1

N

L
L
L
L
L
L

©2

°

¯
¯

¯
¯

¯
¯

©3

N

L
L
L
L
L
L

©4

°

¯
¯

¯
¯

¯
¯

©5

?
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L
L
L
L
L
L

©7

°

¯
¯

¯
¯

¯
¯

©8
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L
L
L
L
L
L

©9

°

¯
¯

¯
¯

¯
¯

©10

N

L
L
L
L
L
L

©11

°

¯
¯

¯
¯

¯
¯

©12

Q = P

with facets labeled ©1 ©3 ©2 ©5 ©4 ©6 ©8 ©7 ©10 ©9 ©12 ©11

=⇒ only one non-artificial equilibrium:

0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0

Lemke–Howson will take long to find it!



Lemke-Howson on dual cyclic polytopes

P Q
©1 ©2 ©3 ©4 ©5 ©6 ©7 ©8 ©1 ©3 ©2 ©4 ©6 ©5 ©8 ©7
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1



Lemke-Howson on dual cyclic polytopes

P Q
©1 ©2 ©3 ©4 ©5 ©6 ©7 ©8 ©1 ©3 ©2 ©4 ©6 ©5 ©8 ©7
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 1 1 0 0 0 ­
­
­



Lemke-Howson on dual cyclic polytopes

P Q
©1 ©2 ©3 ©4 ©5 ©6 ©7 ©8 ©1 ©3 ©2 ©4 ©6 ©5 ©8 ©7
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1



Lemke-Howson on dual cyclic polytopes
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Lemke-Howson on dual cyclic polytopes

P Q
©1 ©2 ©3 ©4 ©5 ©6 ©7 ©8 ©1 ©3 ©2 ©4 ©6 ©5 ©8 ©7
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
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­
­
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­
­
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0 0 1 1 1 1 0 0 ­
­
­
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0 0 0 1 1 1 1 0 ­
­
­

0 1 1 0 0 1 1 0

0 0 1 1 0 1 1 0 ­
­
­

0 0 1 1 0 1 1 0

0 1 1 0 0 1 1 0 ­
­
­

0 0 0 1 1 1 1 0

0 1 1 0 0 0 1 1 ­
­
­

0 0 1 1 1 1 0 0

0 0 1 1 0 0 1 1 ­
­
­

0 1 1 0 1 1 0 0

0 0 0 1 1 0 1 1 ­
­
­

0 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 ­
­
­

1 1 1 1 0 0 0 0



A(4) = path for d=4, label 1
1 2 3 4 5 6 7 8 1 3 2 4 6 5 8 7
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1



B(6) = path for d=6, label 12
1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 11
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1



A(4) is prefix of B(6)
1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 11
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1



A(6) = path for d=6, label 1
1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 11
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1
22 1 1 1 1 1 1 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1 1 1 1 1
24 1 1 1 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1 1 1 1 1 1
29 1 1 1 1 1 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1 1 1 1
33 1 1 1 1 1 1 1 1 1 1 1 1
34 1 1 1 1 1 1 1 1 1 1 1 1
35 1 1 1 1 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1 1 1
37 1 1 1 1 1 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 1 1 1
41 1 1 1 1 1 1 1 1 1 1 1 1
42 1 1 1 1 1 1 1 1 1 1 1 1
43 1 1 1 1 1 1 1 1 1 1 1 1
44 1 1 1 1 1 1 1 1 1 1 1 1



B(6) is prefix of A(6)
1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 11
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1
22 1 1 1 1 1 1 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1 1 1 1 1
24 1 1 1 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1 1 1 1 1 1
29 1 1 1 1 1 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1 1 1 1
33 1 1 1 1 1 1 1 1 1 1 1 1
34 1 1 1 1 1 1 1 1 1 1 1 1
35 1 1 1 1 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1 1 1
37 1 1 1 1 1 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 1 1 1
41 1 1 1 1 1 1 1 1 1 1 1 1
42 1 1 1 1 1 1 1 1 1 1 1 1
43 1 1 1 1 1 1 1 1 1 1 1 1
44 1 1 1 1 1 1 1 1 1 1 1 1



Suffix of A(6) = C(6) = A(4)+B(6)
1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 11
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1
22 1 1 1 1 1 1 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1 1 1 1 1
24 1 1 1 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1 1 1 1 1 1
29 1 1 1 1 1 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1 1 1 1
33 1 1 1 1 1 1 1 1 1 1 1 1
34 1 1 1 1 1 1 1 1 1 1 1 1
35 1 1 1 1 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1 1 1
37 1 1 1 1 1 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 1 1 1
41 1 1 1 1 1 1 1 1 1 1 1 1
42 1 1 1 1 1 1 1 1 1 1 1 1
43 1 1 1 1 1 1 1 1 1 1 1 1
44 1 1 1 1 1 1 1 1 1 1 1 1



Recurrences for longest paths

A(d) = LH path dropping label 1 in dim d

B(d) = LH path dropping label 2d in dim d

C(d) = suffix of A(d)

lengths of 

B(2)  C(2)  A(2)  B(4)  C(4)  A(4)  B(6)  C(6)  A(6)  . . .

are the Fibonacci numbers

  2       3       5       8      13     21    34     55     89    . . .



Exponential path lengths

longest paths: drop label  1  or  2d,  paths A(d), B(d)

path length   ( φ3d/2 )

with  Golden Ratio   φ =  (5 + 1) / 2 = 1.618...

shortest paths: drop label  3d/2,  path  B(d/2)+B(d/2+2)

path length   ( φ3d/4 )= (1.434...d )

 



Summary and extensions

− NE of a bimatrix game = combinatorial polytope problem

− label dual cyclic polytopes, 
equilibrium at end of exponentially long paths

− but:  fully mixed equilibrium easily guessed
by support enumeration algorithms

− can extend to  d × 2d  games with hard-to-guess
support  (exponentially many guesses on average)
and exponentially long paths



The following song is a cover version of an

original by Billy Joel, "The longest time".

This version by Daniel Barrett, who wrote it as a 

graduate student at Johns Hopkins University, 

"on May 1, 1988, during a difficult Algorithms II 

final exam", and subsequently recorded it.



Woh oh-oh-oh find the longest path

Woh oh-oh find the longest path.

If you say P is NP tonight
there would still be
papers left to write
I have a weakness
I'm addicted to completeness
and I keep searching
for the longest path.

The algorithm I would like to see
is of polynomial degree
but it's elusive
nobody has found conclusive
evidence that we can find
the longest path.



I have been
hard working for so long
I swear it's right
and he marks it wrong
somehow I feel
sorry when it's done
GPA 2.1
is more than I hope for

Garey, Johnson,
Karp and other men (and women, too)
try to make it order N log N
am I a mad fool
if I spend my life in grad school
forever following the longest path

Woh oh-oh-oh find the longest path
Woh oh-oh find the longest path
Woh oh-oh find the longest path.


