Games, geometry, and [the computational complexity of] finding equilibria

Bernhard von Stengel

Department of Mathematics
London School of Economics

Overview

An introduction to computational complexity, two open problems and a result on equilibrium computation:

- solving simple stochastic games
- finding a Nash equilibrium of a bimatrix game: long Lemke-Howson paths
[joint with Rahul Savani]

Computational complexity

Computational complexity of a problem $=$ running time as function of input size n ($\mathrm{n}=$ bits required to specify problem instance).

Decision problems = decide "yes" or "no"

Example:

Perfect matching

Input: \quad Bipartite graph G (list of edges).
Question: Does G have a perfect matching?

Finding a perfect matching

Finding a perfect matching

Perfect matching?

"no" - certificate

The complexity class NP
 "nondeterministic polynomial time"

A decision problem belongs to NP
if a "yes" answer can be verified quickly, that is, in polynomial time with the help of a nondeterministically found short "certificate".

Example:
Perfect matching \in NP,
("yes"-)certificate = set of matched edges.

The complexity class co-NP

A decision problem belongs to co-NP
if a "no" answer can be verified quickly.
Example:
Perfect matching $\in \mathbf{c o}-\mathbf{N P}$,
"no"-certificate $=$ node set A so that
$\mid\{b: a \in A,(a, b)$ is an edge $\}|<|A|$,
which exists if the graph has no perfect matching by Hall's marriage theorem.

The complexity class P "polynomial time"

A decision problem belongs to \mathbf{P}
if it can be decided ("yes" or "no") quickly,
that is, in polynomial time $O\left(n^{k}\right)$ for input size n,
for some constant k.
(Typically small k, e.g. k=3).

Perfect matching is in \mathbf{P}

Input: Bipartite graph with n nodes on each side. Output: Perfect matching, or "no"-certificate A.

Augmenting-path algorithm:
for each unmatched node $\vee \times n$

- find augmenting path from $v \quad O\left(n^{2}\right)$
- flip matched and unmatched edges
overall:
$\mathrm{O}\left(\mathrm{n}^{3}\right)$

Start with unmatched node

Find unmatched node

Get matched edge

Next unmatched node

Find matched node

Go back along matched edge

Find unmatched node

Flip edges

Next unmatched node

Find unmatched node

Flip edge

Next unmatched node

Find matched node

Go back along matched edge

Find unmatched node

Flip edges, done

Sitting friends around a table

= finding a Hamiltonian cycle

Hamiltonian cycle, \in NP

Hamiltonian cycle?

Complexity of Hamiltonian cycle

Input: Graph G
Question: Does G have a Hamiltonian cycle? (= cycle that visits each node once)

Hamiltonian cycle is [widely believed to be] not in co-NP.
[Karp 1975]:
Hamiltonian cycle is NP-complete.

NP-complete problems

A decision problem is NP-complete
if it is in NP, and if every problem in NP
can in polynomial time be reduced to it.
If an NP-complete problem is in \mathbf{P}, then

$$
N P=P
$$

(the \$1,000,000 question,
[widely believed: NP $\neq P$, NP \neq co-NP]).
See: Garey / Johnson, Computers and Intractability: A Guide to Theory of NP-completeness [1979].

Exponential algorithms

The only known algorithms to decide
NP-complete problems of size n are exponential, with running time Cn^{n} for $\mathrm{C}>1$.

Why not use brute force?
E.g. try out all n ! permutations of nodes for Hamiltonian path?

$$
\delta<
$$

Why polynomial time?

Polynomial time algorithms scale well, e.g. $O\left(n^{3}\right)$ algorithm:
input size increases from
\Rightarrow
running time increases from cn^{3} to $8 \mathrm{cn}^{3}$

The complexity classes

The complexity classes

Primes

Matrix games

The complexity classes

Primes

Simple stochastic games

Matrix games in NP \cap co-NP

Input: Integer matrix A, rational number q
Question: Does the zero-sum matrix game A have value $\geq q$?

In NP / co-NP with mixed strategies for maximizer / minimizer as certificates.

In \mathbf{P} via polynomial-time linear programming algorithm [Khachiyan 1979]

Primes in NP \cap co-NP

Input: Integer x with n digits
Question: Is x prime?

In co-NP: factors as certificate
In NP: [Pratt 1975]
In \mathbf{P} :
[Agrawal / Kayal / Saxena 2004]
This is not factoring in polynomial time!

Game theoretic-problems in NP \cap co-NP but not known to be in P

Parity games:
Used in logic and verification, equivalent to model checking for modal mu-calculus.

Mean-payoff games:
Used in competitive analysis of online algorithms.
Simple stochastic games:
More general than both.

Simple stochastic game

= directed graph with
out-degree-2 nodes:

w.l.o.g. [Condon 1992]: stopping game (ends with prob. 1)

Simple stochastic game

Certificate: strategies and payoffs

Solving simple stochastic games

$\begin{array}{ll}\text { Input: } & \text { Simple stochastic game, node } u, \\ & \text { rational number q }\end{array}$
Question: When started at u, does the game have value $\geq q$?

In NP / co-NP with pure Markov strategies for max / min and a value for each node as certificates.

But: no polynomial-time algorithm known!

Strategy improvement algorithm

[Hoffman / Karp 1966]

Start with arbitrary strategy s of max
loop: Let t be best response of \min to s.
Let s' be obtained from s by switching all max-choices with better value(s,t).
if $s \neq s^{\prime}$ repeat with $s \leftarrow s^{\prime}$

Each iteration quick, but number of iterations not known to be polynomial (nor exponential).

start with some max strategy s

best response t

switch for max

change to s'

best response t'

switch for max

change to s"

(same) best response t'

no change for max, done

Recent progress

[Gärtner / Rüst 2005]
A simple stochastic game can be expressed as a P-matrix LCP.

LCP = Linear Complementarity Problem
P-matrix: LCP has always unique solution.
Polynomial-time interior-point methods for some P-matrix LCPs known [Ye 2002].

Finding a Nash equilibrium

$\begin{array}{ll}\text { Input: } & \text { Bimatrix game }(\mathrm{A}, \mathrm{B}) . \\ \text { Output: } & \text { A Nash equilibrium }(\mathrm{x}, \mathrm{y}) .\end{array}$

This is a (NP) search problem.

The decision problem is trivial!

Finding a Nash equilibrium

Input: \quad Bimatrix game (A, B).
Output: A Nash equilibrium (x,y).

This is a (NP) search problem.

No polynomial-time algorithm known!

Decision problems for Nash equilibria

[Gilboa / Zemel 1989]
The following problems are NP-complete:

Input: Bimatrix game, rational number q .
Question: Does the game have a Nash equilibrium with payoff $\geq q$ to player 1 ?

Input: Bimatrix game.
Question: Does the game have a unique Nash equilibrium?

Long Lemke-Howson paths

[Savani / von Stengel 2006]

The Lemke-Howson algorithm for finding one Nash equilibrium of a bimatrix game may take exponential time.

Nash equilibria of bimatrix games

$$
A=\begin{array}{ll}
3 & 3 \\
2 & 5 \\
0 & 6
\end{array}
$$

Nash equilibrium =

pair of strategies x, y with
x best response to y and
y best response to x .

Mixed equilibria

$$
\begin{array}{ll}
A=\begin{array}{ll}
3 & 3 \\
2 & 5 \\
0 & 6
\end{array} & B=\begin{array}{ll}
1 & 0 \\
0 & 2 \\
4 & 3
\end{array} \\
x=\begin{array}{c}
0 \\
1 / 3 \\
2 / 3
\end{array} & y^{\top}=\begin{array}{ll}
1 / 3 & 2 / 3 \\
\hline y=\begin{array}{l}
3 \\
4 \\
4
\end{array} & x^{\top} B=8 / 3 \\
\hline
\end{array}
\end{array}
$$

Best response polytope \mathbf{Q} for player 2

$$
\begin{aligned}
& \begin{array}{l}
\text { (1) } \left.\begin{array}{ll}
\mathbf{y}_{4} & \mathbf{y}_{5} \\
3 & 3 \\
\text { (2) } & 2 \\
2 & 5 \\
\text { (3) } & 0
\end{array}\right]=\mathrm{A}
\end{array} \\
& \mathbf{Q}=\left\{\left(\mathrm{y}_{4}, \mathrm{y}_{5}\right) \mid\right. \\
& \text { (1): } 3 \mathrm{y}_{4}+3 \mathrm{y}_{5} \leq 1 \\
& \text { (2): } 2 \mathbf{y}_{4}+5 \mathbf{y}_{5} \leq 1 \\
& \text { (3): } \quad 6 \mathrm{y}_{5} \leq 1 \\
& \begin{array}{cc}
\text { (4): } & \mathrm{y}_{4} \\
\text { (5): } & \\
& \\
\mathrm{y}_{5} \geq 0
\end{array} \\
& Q=\{y \mid A y \leq 1, y \geq 0\}
\end{aligned}
$$

Best response polytope \mathbf{Q} for player 2

$$
\begin{aligned}
& \begin{array}{l}
\text { (1) } \left.\begin{array}{ll}
\mathbf{y}_{4} & \mathbf{y}_{5} \\
3 & 3 \\
\text { (2) } & 2 \\
2 & 5 \\
\text { (3) } & 0
\end{array}\right]=\mathrm{A}
\end{array} \\
& \mathbf{Q}=\left\{\left(\mathrm{y}_{4}, \mathrm{y}_{5}\right) \mid\right. \\
& \text { (1): } 3 \mathrm{y}_{4}+3 \mathrm{y}_{5} \leq 1 \\
& \text { (2): } 2 \mathbf{y}_{4}+5 \mathbf{y}_{5} \leq 1 \\
& \text { (3): } \quad 6 \mathrm{y}_{5} \leq 1 \\
& \left.\begin{array}{lll}
\text { (4): } & \mathrm{y}_{4} & \geq 0 \\
\text { (5): } & & \mathrm{y}_{5} \geq 0
\end{array}\right\} \\
& Q=\{y \mid A y \leq 1, y \geq 0\}
\end{aligned}
$$

Best response polytope \mathbf{P} for player 1

$$
P=\left\{x \mid x \geq 0, x^{\top} B \leq 1\right\}
$$

(3)

Equilibrium = completely labeled pair

pure equilibrium

Equilibrium = completely labeled pair

mixed equilibrium

The Lemke-Howson algorithm

The Lemke-Howson algorithm

Drop label 3

The Lemke-Howson algorithm

Drop label 3

Why Lemke-Howson works

LH finds at least one Nash equilibrium because

- finitely many "vertices"
for nondegenerate (generic) games:
- unique starting edge given missing label
- unique continuation
\Rightarrow precludes "coming back" like here:

Complexity of Lemke-Howson

- finds at least one Nash equilibrium, pivots like Simplex algorithm for linear programming
- Simplex may be exponential [Klee-Minty cubes]
- exponentially many steps of Lemke-Howson for any dropped label?
- Yes! This is our result.

Our result

There are $d \times d$ games with exactly one Nash equilibrium, for which the Lemke-Howson algorithm takes $\geq \phi 3 \mathrm{~d} / 4$ many steps for any dropped label (with Golden Ratio $\quad \phi=(\sqrt{ } 5+1) / 2=1.618 \ldots$..)

We will show this using dual cyclic polytopes.

Vertices as bit patterns

Vertices as bit patterns

Q

Dual cyclic polytopes

- vertices = strings of \mathbf{n} bits with \mathbf{d} bits "1",
- no odd substrings 010, 01110, 0111110, ... [Gale evenness]

Example: $\quad \mathrm{d}=4, \mathrm{n}=6 \quad \mathrm{~d}=2, \mathrm{n}=6 \quad(4 \times 2$ game $)$

111100	000011
111001	000110
110110	001100
110011	011000
101101	110000
100111	100001
011110	
011011	
001111	

Permuted labels

P = dual cyclic polytope in dimension d with 2d facets

only one non-artificial equilibrium:

$$
\begin{aligned}
& 000000111111 \\
& 111111000000
\end{aligned}
$$

Lemke-Howson will take long to find it!

Lemke-Howson on dual cyclic polytopes

\[

\]

Lemke-Howson on dual cyclic polytopes

$$
\begin{aligned}
& P \quad Q \\
& \begin{array}{cccccccc|cccccccc}
\text { (1) } & \text { (2) } & \text { (3) } & \text { (4) } & \text { (5) } & \text { (6) } & \text { (7) } & (8) & (1) & (3) & (2) & (4) & (6) & (5) & (8) & (7) \\
\hline \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & & & & & & & &
\end{array}
\end{aligned}
$$

Lemke-Howson on dual cyclic polytopes

$$
\begin{aligned}
& \mathbf{P} \quad \mathbf{Q}
\end{aligned}
$$

Lemke-Howson on dual cyclic polytopes

$$
\begin{aligned}
& P \quad Q \\
& \begin{array}{cccccccc|cccccccc}
\text { (1) } & \text { (2) } & \text { (3) } & \text { (4) } & \text { (5) } & \text { (6) } & \text { (7) } & \text { (8) } & \text { (1) } & \text { (3) } & \text { (2) } & \text { (4) } & \text { (6) } & \text { (5) } & \text { (8) } & (7) \\
\hline \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & & & & & & & &
\end{array}
\end{aligned}
$$

Lemke-Howson on dual cyclic polytopes

	P							Q							
(1)		(3)	(4)	(5)	(6)			(1)	(3)	(2)	(4)	(6)	(5)	(8)	(7)
1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1
0	1	1	1	1	0	0	0	0	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	0	0	1	1	0	0	1	1
0	0	1	1	1	1	0	0	0	1	1	0	0	0	1	1
0	0	0	1	1	1	1	0	0	1	1	0	0	1	1	0
0	0	1	1	0	1	1	0	0	0	1	1	0	1	1	0
0	1	1	0	0	1	1	0	0	0	0	1	1	1	1	0
0	1	1	0	0	0	1		0	0	1	1	1	1	0	0
0	0	1	1	0	0	1		0	1	1	0	1	1	0	0
0	0	0	1	1	0	1	1	0	1	1	1	1	0	0	0
0	0	0	0	1	1	1			1	1	1	0	0	0	0

A(4) = path for $\mathrm{d}=4$, label 1

$B(6)=$ path for $\mathrm{d}=6$, label 12

$A(4)$ is prefix of $B(6)$

$A(6)=$ path for $d=6$, label 1

$B(6)$ is prefix of $A(6)$

Suffix of $A(6)=C(6)=A(4)+B(6)$

Recurrences for longest paths

$\mathbf{A}(\mathrm{d})=$ LH path dropping label 1 in dim d
$B(d)=$ LH path dropping label 2 d in dim d
$C(d)=$ suffix of $A(d)$
lengths of
$B(2) C(2) A(2) B(4) C(4) A(4) B(6) C(6) A(6) \ldots$
are the Fibonacci numbers
$\begin{array}{llllllllll}2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & \ldots\end{array}$

Exponential path lengths

longest paths: drop label 1 or 2 d , paths $\mathrm{A}(\mathrm{d})$, $\mathrm{B}(\mathrm{d})$ path length $\Omega\left(\phi^{3} \mathrm{~d} / 2\right)$
with Golden Ratio $\phi=(\sqrt{ } 5+1) / 2=1.618 \ldots$
shortest paths: drop label $3 \mathrm{~d} / 2$, path $\mathrm{B}(\mathrm{d} / 2)+\mathrm{B}(\mathrm{d} / 2+2)$
path length $\Omega\left(\phi^{3 \mathrm{~d} / 4}\right)=\Omega(1.434 \ldots \mathrm{~d})$

Summary and extensions

- NE of a bimatrix game = combinatorial polytope problem
- label dual cyclic polytopes, equilibrium at end of exponentially long paths
- but: fully mixed equilibrium easily guessed by support enumeration algorithms
- can extend to $\mathrm{d} \times 2 \mathrm{~d}$ games with hard-to-guess support (exponentially many guesses on average) and exponentially long paths

The following song is a cover version of an original by Billy Joel, "The longest time".

This version by Daniel Barrett, who wrote it as a graduate student at Johns Hopkins University, "on May 1, 1988, during a difficult Algorithms II final exam", and subsequently recorded it.

Woh oh-oh-oh find the longest path
Woh oh-oh find the longest path.
If you say P is NP tonight
there would still be papers left to write
I have a weakness
I'm addicted to completeness
and I keep searching for the longest path.

The algorithm I would like to see is of polynomial degree but it's elusive nobody has found conclusive evidence that we can find the longest path.

I have been
hard working for so long
I swear it's right
and he marks it wrong
somehow I feel
sorry when it's done
GPA 2.1
is more than I hope for
Garey, Johnson,
Karp and other men (and women, too)
try to make it order $\mathrm{N} \log \mathrm{N}$
am I a mad fool
if I spend my life in grad school
forever following the longest path
Woh oh-oh-oh find the longest path
Woh oh-oh find the longest path
Woh oh-oh find the longest path.

