Computationally Efficient Coordination in Game Trees

Bernhard von Stengel

Department of Mathematics London School of Economics

Françoise Forges

University of Paris-Dauphine, France

Overview

Aim:

New definition of correlated equilibrium for game trees (= extensive games with perfect recall), called EFCE (Extensive Form Correlated Equilibrium) which is "natural" and computationally tractable

Overview:

- Example: a signalling problem
- what are correlated equilibria (CE)?
- communication and CE: the role of information sets
- define EFCE
- computational aspects

Background

- R. J. Aumann (1974), Subjectivity and correlation in randomized strategies. Journal of Mathematical Economics 1, 67-96.
- R. B. Myerson (1986), Multistage games with communication. *Econometrica* **54**, 323-358.
- F. Forges (1986), An approach to communication equilibria. *Econometrica* **54**, 1375-1385.
- R. J. Aumann (1987), Correlated equilibrium as an expression of Bayesian rationality. *Econometrica* **55**, 1-18.
- F. Forges (1993), Five legitimate definitions of correlated equilibrium in games with incomplete information. *Theory and Decision* **35**, 277-310.

Accept a research student?

Explicit signals for player I

No type-revealing equilibria

same probabilities, otherwise both G and B prefer signal X or Y with higher acceptance chance, so one signal has prob(B) at least 1/2, I not optimal, prob(I)=0.

Goal:

Introduce concept of **coordination** in game trees

via correlated equilibrium,

in this example to achieve a type-revealing equilibrium:

allowing the good (G) student and professor to coordinate

Chicken

Nash equilibria

play

1/4

1/4

2.5

2.5

pay

1/4

1/4

Correlated equilibria

Incentive constraints

play

$$a+b+c+d=1$$

$$a, b, c, d \ge 0$$

$$4a + 1b \geq 5a + 0b$$

$$5c + 0d \geq 4c + 1d$$

$$\Leftrightarrow$$
 b \geq **a**, **c** \geq **d**

$$4a + 1c \geq 5a + 0c$$

$$5b + 0d \geq 4b + 1d$$

$$\Leftrightarrow$$
 c \geq a, b \geq d

Linear incentive constraints!

set of correlated equilibria

- = polytope, defined by linear incentive constraints that compare any two strategies of a player
- variables = probabilities for strategy profiles
- holds for any number of players
- find easily CE with maximum payoff(-sum)

Canonical form

"CE = players talk beforehand, with the help of a mediator"

Extend game by initial stage where

- people send messages to a device, which computes (possibly randomly) messages, sends them back, until communication stops.
- then players act;
- look for Nash equilibrium of extended game.

Canonical form: get CE, where

- device has no inputs, uses commonly known randomization probabilities,
- messages to player = his/her strategies,
 followed as recommendation

New Concept? Myerson's Example

EFCE: use "Sealed Envelopes"

- messages generated at beginning of the game (as in the strategic form)
- information set enhanced with message
- player gets information at information set
 - ⇒ additional information of what to do, the recommended move.
- messages have to be local
 - ⇒ not only delay messages, but also hide them from parallel (same-stage) information sets.

Local Recommendations Only

This EFCE is **not** a normal-form CE, as B would **mimic** G.

Payoffs: with 2 signals X,Y with M signals X,Y,Z,...

prob 1/2: G: 2, 5 G: 2, 5

prob 1/2: B: (3+0)/2, (0+3)/2 B: 3/M, 3(M-1)/M

expected: 1.75, 3.25 1+1.5/M, 4 -1.5/M

Not the agent normal form

Note: separate issue of "perfect" CE

Extensive Form Correlated Equilibrium EFCE

- incentive constraints assume
 - average payoff along equilibrium path (like agent normal form)
 - own optimization when deviating (unlike agent normal form)
- ⇒ reduced strategic form suffices: no need to specify what to do when deviating from recommended move

When computationally tractable?

- strategic-form CE hard to compute when
 2 players and chance moves, but so is any concept defining a convex combination of pure-strategy profiles (including EFCE)!
- extensive games with perfect recall:
 zero-sum 2-player games [Koller, Megiddo, BvS]:
 Nash equilibria easy to compute
 with sequence form
- apply sequence form to computing EFCE for 2-player games of no chance

Strategic-form CE are NP-hard

obtained from SAT instance $(\neg x) \land (x \lor y) \land (x \lor \neg y)$

... even without chance moves

Pre-play with a zero-sum game of generalized "rock-scissors-paper" instead of chance

Idea: Correlate Moves

- consistency constraints
- incentive constraints
- want small number (polynomial in size of game tree)
 of linear (in)equalities
- generate from solution a pure strategy pair,
 = moves recommended to the 2 players

Not too restrictive!

 given an own move recommendation, obtain a conditional behavior strategy of other player.

(local randomization of moves, equivalent to mixed strategy if perfect recall [Kuhn])

- need strategy of opponent (including off-equilibrium path behavior) to decide if own recommendation good
- consistency constraints?

Consistency?

Cannot correlate moves at any two information sets independently:

marginal probabilities for moves must agree

... but this does not suffice:

	a	b	c	d
L	1/2	0	1/2	0
R	0	1/2	0	1/2
S	0	1/2	1/2	0
T	1/2	0	0	1/2

locally but not globally consistent, not a convex combination of pure strategy pairs.

Convex hull of pure strategy pairs

Example of pure strategy pair:

	a	b	c	d
L	1	0	1	0
R	0	0	0	0
S	0	0	0	0
T	1	0	1	0

Convex hull needs in general **exponentially many** inequalities (unless P=NP)

These arise when there are chance moves!

	Ø	l_X	r_X	l_{Y}	r_{Y}
Ø	1	1/2	1/2	1/2	1/2
G	1/2	1/4	1/4	1/4	1/4
В	1/2	1/4	1/4	1/4	1/4
GX_G	1/4	1/4	0	1/4	0
GY_G	1/4	0	1/4	0	1/4
BX_B	1/4	0	1/4	1/4	0
$B Y_B$	1/4	1/4	0	0	1/4

	Ø	l_X	r_X	l_{Y}	r_{Y}
Ø	1	1/2	1/2	1/2	1/2
G	1/2	1/4	1/4	1/4	1/4
В	1/2	1/4	1/4	1/4	1/4
GX_G	1/4	1/4	0	1/4	0
GY_G	1/4	0	1/4	0	1/4
BX_B	1/4	0	1/4	1/4	0
$B Y_B$	1/4	1/4	0	0	1/4

	Ø	l_{X}	r_X	l_Y	r_Y
Ø	1	1/2	1/2	1/2	1/2
G	1/2	1/4	1/4	1/4	1/4
\boldsymbol{B}	1/2	1/4	1/4	1/4	1/4
GX_G			0		
GY_G	1/4	0	1/4	0	1/4
BX_B	1/4	0	1/4	1/4	0
$B Y_B$	1/4	1/4	0	0	1/4

	Ø	l_{X}	r_X	l_{Y}	r_Y
Ø	1	1/2	1/2	1/2	1/2
G	1/2	1/4	1/4	1/4	1/4
В	1/2	1/4	1/4	1/4	1/4
GX_G	1/4	1/4	0	1/4	0
GY_G	1/4	0	1/4	0	1/4
BX_B	1/4	0	1/4	1/4	0
$B Y_B$	1/4	1/4	0	0	1/4

	Ø	l_{X}	r_X	l_{Y}	r_{Y}
Ø	1	1/2	1/2	1/2	1/2
G	1/2	1/4	1/4	1/4	1/4
\boldsymbol{B}	1/2	1/4	1/4	1/4	1/4
GX_G	1/4	1/4	0	1/4	0
GY_G	1/4	0	1/4	0	1/4
BX_B	1/4	0	1/4	1/4	0
$B Y_B$	1/4	1/4	0	0	1/4

	Ø	l_{X}	r_X	l_{Y}	r_{Y}
Ø	1	1/2	1/2	1/2	1/2
G	1/2	1/4	1/4	1/4	1/4
В	1/2	1/4	1/4	1/4	1/4
GX_G	1/4	1/4	0	1/4	0
GY_G	1/4	0	1/4	0	1/4
BX_B	1/4	0	1/4	1/4	0
$B Y_B$	1/4	1/4	0	0	1/4

	Ø	l_{X}	r_X	l_{Y}	r_{Y}
Ø	1	1/2	1/2	1/2	1/2
G	1/2	1/4	1/4	1/4	1/4
\boldsymbol{B}	1/2	1/4	1/4	1/4	1/4
GX_G	1/4	1/4	0	1/4	0
GY_G	1/4	0	1/4	0	1/4
BX_B	1/4	0	1/4	1/4	0
$B Y_B$	1/4	1/4	0	0	1/4

	Ø	l_{X}	r_X	l_Y	r_{Y}
Ø	1	1/2	1/2	1/2	1/2
\boldsymbol{G}	1/2	1/4	1/4	1/4	1/4
\boldsymbol{B}	1/2	1/4	1/4	1/4	1/4
GX_G	1/4	1/4	0	1/4	0
GY_G	1/4	0	1/4	0	1/4
BX_B	1/4	0	1/4	1/4	0
BY_B	1/4	1/4	0	0	1/4

	Ø	l_{X}	r_X	l_Y	r_{Y}
Ø	1	1/2	1/2	1/2	1/2
\boldsymbol{G}	1/2	1/4	1/4	1/4	1/4
\boldsymbol{B}	1/2	1/4	1/4	1/4	1/4
GX_G	1/4	1/4	0	1/4	0
GY_G	1/4	0	1/4	0	1/4
BX_B	1/4	0	1/4	1/4	0
$B Y_B$	1/4	1/4	0	0	1/4

	Ø	l_{X}	r_X	l_{Y}	r_{Y}
Ø	1	1/2	1/2	1/2	1/2
G	1/2	1/4	1/4	1/4	1/4
В	1/2	1/4	1/4	1/4	1/4
GX_G	1/4	1/4	0	1/4	0
GY_G	1/4	0	1/4	0	1/4
BX_B	1/4	0	1/4	1/4	0
$B Y_B$	1/4	1/4	0	0	1/4

Linear constraints

- expected payoffs not linear in (joint) move probabilities
- consider instead sequences of moves (determined by last move in sequence)
- given a solution fulfilling consistency and incentive constraints:
 - **generate** corresponding pure strategy pair by top-down tree traversal, gives EFCE
 - Use that 2-player games with no chance are **restrictive**: for example, have **time structure** (= know if move before or after opponent)

Incentive constraints

- along equilibrium path: average "own payoff"
- this payoff when following recommendation compared with deviation (alternative moves),
 optimize dynamic-programming style
- relatively straightforward linear inequalities.

Summary

New concept of EFCE defines

- correlated equilibrium naturally for any extensive game (before: only for multistage games)
- combines "behavior strategies" (moves instead of strategies) with correlation
- is computationally tractable for 2 players without chance moves.