Constructing and computing equilibria

for two-player games

Bernhard von Stengel

Department of Mathematics
London School of Economics



Nash equilibria of bimatrix games

0 6 2 1
A= 2 5 B= 1 3
3 3 4 3

Nash equilibrium =
pair of strategies x,y with

X best response to y and
y best response to x.



Mixed equilibria
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only pure best responses can have probability > O



Best response condition

Let x and y be mixed strategies of player | and Il, respectively.
Then x Is a best response to y
< for all pure strategies | of player I:

i>0 = (Ay)i=u=max{(Ay)k|1<k<m}.

Here, (Ay); is the ith component of Ay, which is the expected
payoff to player | when playing row 1.

Proof.
m

XAY = Zx. AY)i = Z | (U—(u—(Ay)i)

— Zx. le. = U— ;xi (u—(Ay)i) < u

because x; >0 and u— (Ay); > 0 for all i. Furthermore,
XAy =Uu <= x>0 implies (Ay); = u, as claimed.



Best responses to mixed strategy of player 2

1,0

0,1

(@)

0,
2)
(3

Ww N O

W o o
I
>

payoffs to
player |



Best responses to mixed strategy of player 2

1,0

0,1

(@)

0,
2)
(3

Ww N O

W o o
I
>

payoffs to
player |



Best responses to mixed strategy of player 2

Q.

1,0

0,1

(@)

0,
2)
(3

Ww N O

W o o
I
>

payoffs to
player |



Best responses to mixed strategy of player 2

1,0

0,1

(@)

0,
2)
(3

W N O

W o o
I
>

payoffs to
player |



Best responses to mixed strategy of player 2

(@)

0,
2)
(3

W N O

W o o
I
>

payoffs to
player |
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Alternative view
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Chop off Toblerone prism
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Best responses to mixed strategy of player 1
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Equilibrium = completely labeled strategy pair
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Equilibrium = completely labeled strategy pair
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Constructing games using geometry

low dimension: 2, 3, (4) pure strategies:

subdivide mixed strategy simplex into
response regions, label suitably

high dimension:

use polytopes with known combinatorial structure
e.g. for constructing games with many equilibria,
or long Lemke-Howson computations

[Savani & von Stengel, FOCS 2004,
Econometrica 2006]



Construct isolated non-quasi-strict equilibrium




Construct isolated non-quasi-strict equilibrium
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The Lemke-Howson algorithm
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The Lemke-Howson algorithm

0
0,0
) /\@

0
» @ o

0

(@ found label (2)




Why Lemke-Howson works

LH finds at least one Nash equilibrium because
e finitely many "vertices"

for nondegenerate (generic) games:

e unique starting edge given missing label

* unigue continuation

= precludes "coming back" like here:



The castle where each room has at most two doors
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The castle where each room has at most two doors
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The Lemke-Howson algorithm
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The Lemke-Howson algorithm
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Odd number of Nash equilibria!
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Best response polyhedron  H» for player 2
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Best response polytope Q for player 2
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Projective transformation

H,, Q same face incidences @




Best response polytope Q for player 2
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Best response polytope P for player 1

P={x| x>0, xXB<1}




Equilibrium = completely labeled pair

pure equilibrium



Equilibrium = completely labeled pair

mixed equilibrium
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Complexity of Lemke-Howson

finds at least one Nash equilibrium,
pivots like Simplex algorithm for linear programming

Simplex may be exponential [Klee-Minty cubes]

exponentially many steps of Lemke-Howson
for any dropped label?

Yes! This is our result.



Our result

There are d x d games with exactly one Nash
equilibrium, for which the Lemke-Howson algorithm

takes = (394 many steps for any dropped label
(with Golden Ratio @=(V5+1)/2 =1.618...)

We will show this extending

[Morris 1994] - exponentially long Lemke paths
(finds symmetric equilibria of symmetric games)

[von Stengel 1999] - games with many equilibria

using dual cyclic polytopes
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moment curve
nw: R — R

cyclic polytope

Cyclic polytopes

in R?
t— u(t) = (t,t24,...,tH)".

In dim d with IN vertices:

Ca(IN) := conv{pu(ty),...

b <ty < :--

’ .UJ(tN)}

< tn



Facets of C4(IV)

Any d of the vertices u(t1),...,u(tx) define hyperplane F in R?.
F facet <— all other vertices are on one side of F

Example: Cj3(6), vertices 100110

J ()

p(ts)



Gale’s Evenness condition

bitstring s = s1S2... s8N, s; € {0,1} e.g. 100110
defines facet F =conv{u(t;) | s; = 1} of Cy(IV)

F

<= s hasonly even-length substrings 0110, 011110, 01111110,

forbidden: substrings 010, 01110, ... of odd length.




P =conv{cy,...,cn},

polar polytope

PA={z|c'2<1,...

Polar polytopes

0 € int(P)

, ey 'z < 1}

vertices c¢;

facets {z € P2 | ¢;"'z = 1}




Dual cyclic polytopes

— vertices = strings of N bits with d bits "1",

— no odd substrings 010, 01110, 0111110, ...
[Gale evenness]

Example: d=4,N=6 d=2, N=6 (4 x 2 game)

111100 000011
111001 000110
110110 001100
110011 011000
101101 110000
100111 100001
011110

011011

001111



Vertices of Cy(2d)? and complementarity

vertex no. | defining facets | labels (example)
1| 00001111
2| 00011011
3| 00011110
4| 00110011
5/ 00110110
6 00111100
7| 01100011
8| 01100110 @B 6@
9| 01101100
10| 01111000
C4(8)2 11| 10000111
12| 10001101
13| 100112000 | 1) @G
14| 10110001
15, 11000011
16| 11000110
17| 11001100
18| 11011000
19| 11100001
20 11110000




Permuted labels

P = dual cyclic polytope in dimension d with 2d facets

with facets labeled (1) 2)3) @) (5) 6) (7)(®) (9) () @) @)

Q=P

A AL ALK

with facets labeled (1) 3 (2) 65)(@) (6) (8 (7) ) (9) @ 1)

p—

Lemke—Howson

only one non-artificial equilibrium:
000000111111
111111000000

will take long to find it!



Lemke-Howson on dual cyclic polytopes
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Lemke-Howson on dual cyclic polytopes
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Lemke-Howson on dual cyclic polytopes
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path for d=4, label 1

A(4)




6, label 12

B(6) = path for d




A(4) is prefix of B(6)




path for d=6, label 1

A(6)




B(6) is prefix of A(6)




f A(6) = C(6) = A(4)+B(6)

IX O

Suff




Recurrences for longest paths

A(d) = LH path dropping label 1 in dim d
B(d) = LH path dropping label 2d in dim d
C(d) = suffix of A(d)

lengths of

B(2) C(2) A(2) B(4) C(4) A(4) B(6) C(8) A(6) ...

are the Fibonacci numbers

2 3 5 8 13 21 34 55 89



Growth rate of Fibonacci numbers

n Fn | Fay1 | Fap1/Fn

1 1 11.0

2 1 2| 20

3 2 3|15

4 3 5 | 1.66666666667

5 5 8 | 1.6

6 8 13 | 1.625

7 13 21 | 1.61538461538

8 21 34 | 1.61904761905

9 34 55 | 1.61764705882
10 55 89 | 1.61818181818
11 89 144 | 1.61797752809
12 | 144 233 | 1.61805555556
13 | 233 377 | 1.61802575107
14 | 377 610 | 1.61803713528




Growth rate of Fibonacci numbers

Successive values of Fp1/Fn seem to “converge” to a certain
number, about 1.618.. ..

That is, for larger n the Fibonacci numbers seem to grow at this
rate according to
Fniy1 =1.618...: Fp



Growth rate of Fibonacci numbers

Successive values of Fp1/Fn seem to “converge” to a certain
number, about 1.618.. ..

That is, for larger n the Fibonacci numbers seem to grow at this
rate according to
Fniy1 =1.618...: Fp

The following is a geometric plausibility argument (not a proof) for
this specific growth rate.



The Fibonacci spiral
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The Fibonacci spiral
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The Fibonacci spiral
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The Fibonacci spiral

-

\




The Fibonacci spiral

1,sox-(x—1)=1

— Xx=-1——
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The Golden Ratio

The solutionsto x - (x — 1) = 1, that is, x2—x—-1=0,are




The Golden Ratio

The solutions to x - (x — 1) = 1, thatis, x> — x —1 =0, are

The number (1 + +/5)/2 ~ 1.618033988 is known as the
Golden Ratio .



The Golden Ratio

The solutions to x - (x — 1) = 1, thatis, x> — x —1 =0, are




The Golden Ratio

The solutions to x - (x — 1) = 1, thatis, x> — x —1 =0, are

Golden Ratio .




Recurrences for longest paths

A(d) = LH path dropping label 1 in dim d
B(d) = LH path dropping label 2d in dim d
C(d) = suffix of A(d)

lengths of

B(2) C(2) A(2) B(4) C(4) A(4) B(6) C(8) A(6) ...

are the Fibonacci numbers

2 3 5 8 13 21 34 55 89



Exponential path lengths

longest paths: drop label 1 or 2d, paths A(d), B(d)

path length

Q( ¢392)

with Golden Ratio @= (V65+1)/2=1.618...

shortest paths: drop label 3d/2, path B(d/2)+B(d/2+2)

path length

Q( @8di4)=()(1.434..4d)




Summary and extensions

NE of a bimatrix game = combinatorial polytope problem

label dual cyclic polytopes,
equilibrium at end of exponentially long paths

but: fully mixed equilibrium easily guessed
by support enumeration algorithms

can extend to d x 2d games with hard-to-guess
support (exponentially many guesses on average)
and exponentially long paths



The 1984 song ,,The longest time® by Billy Joel was
given the following ,,computer science® version by
Daniel Barrett, who wrote it as a graduate student
at Johns Hopkins University,

,on May 1, 1988, during a difficult Algorithms Il

final exam®, and subsequently recorded it.



Woh oh-oh-oh find the longest path
Woh oh-oh find the longest path.

If you say P is NP tonight
there would still be

papers left to write

| have a weakness

I'm addicted to completeness
and | keep searching

for the longest path.

The algorithm | would like to see
Is of polynomial degree

but it's elusive

nobody has found conclusive
evidence that we can find

the longest path.



| have been

hard working for so long
| swear it's right

and he marks it wrong
somehow | feel

sorry when it's done
GPA 2.1

iIs more than | hope for

Garey, Johnson,

Karp and other men (and women, t00)
try to make it order N log N

am | a mad fool

if | spend my life in grad school
forever following the longest path

Woh oh-oh-oh find the longest path
Woh oh-oh find the longest path
Woh oh-oh find the longest path.



