# Strategic Characterization of the Index of an Equilibrium 

## Arndt von Schemde

## Bernhard von Stengel

Department of Mathematics
London School of Economics

## Theorem

## Given:

- simplicial d-polytope P
- each vertex has a label $\in\{1,2, \ldots, d\}$
- two (disjoint) completely labelled facets S, T of opposite orientation


## Then

- there are labelled points $\mathrm{C} 1, \ldots, \mathrm{ck}$ so that
$\mathrm{S}, \mathrm{T}$ are the only completely labelled facets of the convex hull of $\mathbf{P} \cup\left\{\mathrm{c}_{1}, \ldots, \mathrm{ck}_{\mathrm{k}}\right\}$

Example: d=2


Example: d=2


## Topological proof for d>2



Topological proof for d>2


## Nash equilibria of bimatrix games

$$
A=\begin{array}{ll}
0 & 6 \\
2 & 5 \\
3 & 3
\end{array}
$$



## Nash equilibrium =

pair of strategies $\mathrm{x}, \mathrm{y}$ with
x best response to y and
y best response to x .

## Mixed equilibria

$$
\begin{array}{ll}
A=\begin{array}{|cc}
0 & 6 \\
2 & 5 \\
3 & 3
\end{array} & B=\begin{array}{|cc}
2 & 1 \\
1 & 3 \\
4 & 3
\end{array} \\
x=\begin{array}{c}
2 / 3 \\
1 / 3 \\
0
\end{array} & x^{\top} B=5 / 3 \quad 5 / 3 \\
A y=\begin{array}{c}
4 \\
4 \\
3
\end{array} & y^{\top}=1 / 3 \quad 2 / 3
\end{array}
$$

## Best responses to mixed strategy of player 2



payoffs to player I

## Best responses to mixed strategy of player 2



payoffs to player I

## Best responses to mixed strategy of player 2



payoffs to player I

## Best responses to mixed strategy of player 2



payoffs to player I

## Best responses to mixed strategy of player 2



payoffs to
player I

## Best responses to mixed strategy of player 2



payoffs to player I

## Best responses to mixed strategy of player 2



(1) |  | 5 |
| :--- | :--- |
| (2) | 5 |
|  | 6 |
| 2 | 5 |
| 3 | 3 |
| 3 |  |$=\mathrm{A}$

| payoffs to |
| :--- |
| player I |

best response polyhedron

## Best responses to mixed strategy of player 2


best response polyhedron with facet labels

## Best responses to mixed strategy of player 2



payoffs to player I

## Best responses to mixed strategy of player 2



payoffs to player I



## Best responses to mixed strategy of player 1

| (4) 5 |  |  |
| :---: | :---: | :---: |
| 1 | 2 | 1 |
| (2) | 1 | 3 |
| 3 | 4 | 3 |

payoffs to
player II


## Best responses to mixed strategy of player 1



Best responses to mixed strategy of player 1


Best responses to mixed strategy of player 1


## Best responses to mixed strategy of player 1



## Best responses to mixed strategy of player 1



## Best responses to mixed strategy of player 1



## Best responses to mixed strategy of player 1



Best responses to mixed strategy of player 1


## Best responses to mixed strategy of player 1

|  |  |  |
| :--- | :--- | :--- |
| (1) | 5 | 5 |
| (2) | 2 | 1 |
| 1 | 3 |  |
| 4 | 3 | 3 |

payoffs to
player II


## Equilibrium = completely labeled strategy pair



## Equilibrium = completely labeled strategy pair

(5) (3) (2) (4)


## Equilibrium = completely labeled strategy pair

(5) (3) (2) (4)


## Nondegenerate bimatrix games

Given: $\quad m \times n$ bimatrix game $(A, B)$

$$
\begin{aligned}
& X=\left\{x \in \mathbf{R}^{m} \mid x \geq \mathbf{0}, x_{1}+\ldots+x_{m}=1\right\} \\
& Y=\left\{y \in \mathbf{R}^{n} \mid y \geq \mathbf{0}, y_{1}+\ldots+y_{n}=1\right\}
\end{aligned}
$$

$$
\operatorname{supp}(x)=\left\{i \mid x_{i}>0\right\}
$$

$$
\operatorname{supp}(y)=\left\{j \mid y_{j}>0\right\}
$$

$(A, B)$ nondegenerate $\Leftrightarrow \forall x \in X, y \in Y$ :
$\mid\{j \mid j$ best response to x$\}|\leq|\operatorname{supp}(\mathrm{x})|$,
$\mid\{i \mid i$ best response to y$\}|\leq|\operatorname{supp}(\mathrm{y})|$.

## Nondegeneracy via labels

$m \times n$ bimatrix game $(A, B)$ nondegenerate
$\Leftrightarrow$ no $x \in X$ has more than $m$ labels, no $y \in Y$ has more than $n$ labels.
E.g. $x$ with $>m$ labels, $s$ labels from $\{1, \ldots, m$,
$\Rightarrow>m-s$ labels from $\{m+1, \ldots, m+n\}$
$\Leftrightarrow \quad>|\operatorname{supp}(x)|$ best responses to $x$.
$\Rightarrow$ degenerate.

## Example of a degenerate game



## Making equilibria unique

## Given:

nondegenerate (A,B), Nash equilibrium ( $\mathrm{x}, \mathrm{y}$ ).

## Question:

$\exists$ game $G$ extending ( $A, B$ ) by adding strategies so that $(x, y)$ is the unique equilibrium of $G$ ?
e.g.: G obtained from $(\mathrm{A}, \mathrm{B})$ by adding columns, $(x, y)$ becoming ( $x,[y, 0,0, \ldots, 0]$ ) for G.

Pure equilibrium: need one extra column


## Strategic characterization of the index

We will show a conjecture by Josef Hofbauer:
Theorem:
For nondegenerate (A,B), Nash equilibrium ( $x, y$ ):
index $(x, y)=+1$
$\Leftrightarrow \exists$ game $G$ extending ( $A, B$ )
so that $(x, y)$ is the unique equilibrium of $G$.
suffices: $G$ obtained from $(A, B)$ by adding columns, $(x, y)$ becoming ( $x,[y, 0,0, \ldots, 0]$ ) for $G$.

## Sub-matrices of equilibrium supports

Given: nondegenerate $(A, B), \quad A>0, B>0$, Nash equilibrium ( $\mathrm{x}, \mathrm{y}$ ).

$$
\begin{aligned}
& A=\left(a_{i j}\right), B=\left(b_{i j}\right) \\
& A_{x y}=\left(a_{i j}\right) i \in \operatorname{supp}(x), j \in \operatorname{supp}(y) \\
& B_{x y}=\left(b_{i j}\right) i \in \operatorname{supp}(x), j \in \operatorname{supp}(y)
\end{aligned}
$$

$A_{x y}, B_{x y} \quad$ have full rank $|\operatorname{supp}(x)|$, nonzero determinants.

## Index of an equilibrium (Shapley 1974)

Given: nondegenerate $(A, B), \quad A>0, B>0$, Nash equilibrium ( $\mathrm{x}, \mathrm{y}$ ).

$$
\begin{aligned}
\text { Index }(x, y) & \left.=-\operatorname{sign} \operatorname{det} \begin{array}{lll}
0 & A_{x y} \\
B_{x y}^{\top} & 0
\end{array} \right\rvert\, \\
& =-\operatorname{sign} \operatorname{det}\left(A_{x y}\right) \operatorname{det}\left(B_{x y}\right)(-1)^{|\operatorname{supp}(x)|} \\
& \in\{+1,-1\}
\end{aligned}
$$

## Example: Matching Pennies


$-\operatorname{sign} \operatorname{det}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] \operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}(-1)^{2}=+1\right.$

## Mixed equilibrium in Battle of Sexes


$-\operatorname{sign} \operatorname{det}\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right] \operatorname{det}\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right](-1)^{2}=-1$

## Properties of the index

- independent of
- positive constant added to all payoffs
- order of pure strategies
- pure strategy payoffs outside equilibrium support
- pure-strategy equilibria have index +1
- sum of indices over all equilibria is +1
- the two endpoints of any Lemke-Howson path are equilibria of opposite index.


## New "dual" construction

Given: nondegenerate $m \times n$ game $(A, B), m \leq n$.

- $\quad X$ subdivided into best response regions
dualize $X$ : best response regions for $\mathbf{j} \rightarrow$ points $\mathbf{j}^{\Delta}$
"unplayed strategy" facets of $X \rightarrow$ large unit vectors technical construction: "dual polytopes"
- vertices $x$ of regions become simplices $x^{\Delta}$

Best responses to mixed strategy of player 1


## Construction of $\mathbf{X}^{\Delta}$



## Construction of $\mathbf{X}^{\Delta}$



## Construction of $\mathbf{X}^{\Delta}$



## Construction of $\mathbf{X}^{\Delta}$



Construction of $X^{\Delta}$


## Construction of $\mathbf{X}^{\Delta}$



Construction of $X^{\Delta}$


## Incorporating the other player

So far: $\quad X^{\Delta}$ subdivided, dualized according to player II's payoffs B

Now: for each vertex x of a best response region, with labels $\quad k>m$ : best response of player II or $\quad k \leq m: \quad u n p l a y e d ~ s t r a t e g y ~ o f ~ p l a y e r ~ I ~ I ~$

- $\quad$ subdivide $x^{\Delta}$ into regions of player I's best responses where $\quad$ if $k>m$ : use column $k$ of $A$
- if $k \leq m$ : player I "as if" playing $k$ (artificial unit vector payoff),
$\Rightarrow$ picture $X^{\Delta}$ with labels $1 \ldots \mathrm{~m}$ only, equilibria: all labels.


## subdivide $x^{\Delta}$ via player l's best responses



## subdivide $\mathrm{x}^{\Delta}$



## subdivide $x^{\Delta}$



## The full dual construction



Equilibria have all m labels


## Index = orientation



## Lemke-Howson paths



## Opposite index of endpoints



## Summary

## New construction

- Triangulation reflects player II's best replies
- Division player I's best replies
- Intuitive definition of index
- Illustration of L-H algorithm and related index results
- Low dimension for easy visualization


## Applications

- Strategic definition of index
- Components of equilibria / hyperstability
- Fixed point theory / Sperner's lemma

