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Theorem
Given:

 simplicial d-polytope P
 each vertex has a label  { 1, 2, ..., d }

 two (disjoint) completely labelled facets S, T
 of opposite orientation

Then
 there are labelled points c1, ..., ck  so that

 S, T are the only completely labelled facets of

the convex hull of  P ∪ { c1, ..., ck }
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Topological proof for d > 2
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Nash equilibria of bimatrix games

0   6   2   1
A = 2   5 B =   1   3

3   3    4   3

Nash equilibrium =

pair of strategies  x , y  with

x  best response to  y  and
y  best response to  x.

   

 



Mixed equilibria
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only pure best responses can have probability > 0
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best response polyhedron

Best responses to mixed strategy of player 2
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with facet labels
best response polyhedron
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Equilibrium = completely labeled strategy pair
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Nondegenerate bimatrix games

Given: m × n  bimatrix game  (A,B)

X = { x ∈ Rm  |  x ≥ 0,  x1 + . . . + xm = 1 }
Y = { y ∈ Rn   |  y ≥ 0,  y1 + . . . + yn  = 1 }

supp(x) = { i  |  xi > 0 }   
supp(y) = { j  |  yj > 0 }  

(A,B)  nondegenerate    ⇔   ∀ x ∈X,  y ∈Y: 

| { j | j best response to x } |  ≤  | supp(x) |,
| { i | i best response to y } |  ≤  | supp(y) |.



Nondegeneracy via labels

m × n  bimatrix game  (A,B)  nondegenerate 
 

⇔ no x  X  has more than  m  labels,
no y  Y  has more than  n   labels.

E.g. x with  > m   labels,
s labels from { 1 , . . . , m } ,

⇒ > m−s  labels from { m+1 , . . . , m+n }
⇔ > |supp(x)| best responses to x.
⇒ degenerate.

 



Example of a degenerate game
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Making equilibria unique

Given: 
nondegenerate (A,B),  Nash equilibrium (x,y).

  
Question:

∃ game G extending  (A,B) by adding strategies
so that (x,y) is the unique equilibrium of G?

e.g.:  G obtained from (A,B) by adding columns,
(x,y) becoming  (x,[y, 0,0,...,0])  for G.
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Strategic characterization of the index

We will show a conjecture by Josef Hofbauer: 

Theorem: 

For nondegenerate (A,B),  Nash equilibrium (x,y):

  index (x,y) = +1

⇔ ∃ game G extending  (A,B) 
so that (x,y) is the unique equilibrium of G.

suffices:  G obtained from (A,B) by adding columns,
(x,y) becoming  (x,[y, 0,0,...,0])  for G.



Sub-matrices of equilibrium supports

Given: nondegenerate (A,B),   A>0,  B>0,
Nash equilibrium (x,y).

A = (aij),  B = (bij)

Axy = (aij) i∈supp(x), j∈supp(y) 
Bxy = (bij) i∈supp(x), j∈supp(y) 

Axy ,  Bxy     have full rank |supp(x)|,
nonzero determinants.



Index of an equilibrium (Shapley 1974)

Given: nondegenerate (A,B),   A>0,  B>0,
Nash equilibrium (x,y).

  0    Axy   
Index (x,y) = − sign det   

  BxyT  0

  = − sign det(Axy) det(Bxy) (−1)|supp(x)|    

  ∈  { +1,  −1 }
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Properties of the index

• independent of
− positive constant added to all payoffs
− order of pure strategies
− pure strategy payoffs outside equilibrium support

• pure-strategy equilibria have index +1

• sum of indices over all equilibria is  +1

• the two endpoints of any Lemke-Howson path are
equilibria of opposite index.



New "dual" construction

Given: nondegenerate m × n  game  (A,B),  m ≤ n .

•   X   subdivided into best response regions

•   dualize X:  best response regions for  j  → points j∆
          

"unplayed strategy" facets of X  →  large unit vectors

technical construction:  "dual polytopes"

•   vertices x of regions become simplices x∆ 
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∆Construction of X
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Incorporating the other player

So far: X∆  subdivided, dualized 
according to player II's payoffs B

Now: for each vertex x of a best response region,
with labels k > m : best response of player II

or k ≤ m : unplayed strategy of player I 

• subdivide x∆  into regions of player I's best responses
where − if k > m : use column k of A

− if k ≤ m : player I  "as if" playing k 
(artificial unit vector payoff),

⇒ picture X∆ with labels 1...m  only, equilibria: all labels.
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The full dual construction
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Equilibria have all m labels
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Index = orientation
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Lemke−Howson paths
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Opposite index of endpoints
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Summary

New construction

• Triangulation reflects player II’s best replies

• Division player I’s best replies

• Intuitive definition of index

• Illustration of L-H algorithm and related index results

• Low dimension for easy visualization

Applications
• Strategic definition of index

• Components of equilibria / hyperstability

• Fixed point theory / Sperner's lemma


