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Theorem

Given:

e simplicial d-polytope P
e each vertex hasalabele {1, 2, ...,d}

e two (disjoint) completely labelled facets S, T
of opposite orientation

Then
e there are labelled points cy, ..., ck Sso that

S, T are the only completely labelled facets of
the convex hull of P O {c1, ..., ck }



Example: d = 2
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Topological proof for d > 2
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Nash equilibria of bimatrix games

0 6 2 1
A= 2 5 B= 1 3
3 3 4 3

Nash equilibrium =
pair of strategies x,y with

X best response to y and
y best response to x.



Mixed equilibria
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only pure best responses can have probability > O



Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
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/ best response polyhedron
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Best responses to mixed strategy of player 2
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best response polyhedron
with facet labels
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1

1 (4)(®)
(12 1
(2)[1 3|=B
(3)[a 3
payoffs to
player Il
20 5
0
1 ® 1
1 0
0 1
0 0



Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Equilibrium = completely labeled strategy pair
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Equilibrium = completely labeled strategy pair
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Nondegenerate bimatrix games

Given: m xn bimatrix game (A,B)

X={xORmM | x=20, xa+...+xXm=1}
Y={yUORn | y=20, y1+...+yn =1}

supp(x) ={1 | xi>0}
supp(y) ={J | ¥i>0}

(A,B) nondegenerate < x X, y OY:

| {]|]bestresponsetox}| < | supp(x) |,
| {1|ibestresponsetoy}| < | supp(y) |.



Nondegeneracy via labels

m X n bimatrix game (A,B) nondegenerate

=< nox € X has more than m labels,
noy €Y has more than n labels.

E.g. xwith >m labels,
slabelsfrom{1,..., m},

[ >m-s labelsfrom{m+1,..., m+n}

= > |supp(x)| best responses to x.

[1 degenerate.




Example of a degenerate game
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Making equilibria unique

Given:
nondegenerate (A,B), Nash equilibrium (x,y).

Question:

[ lgame G extending (A,B) by adding strategies
so that (x,y) Is the unigue equilibrium of G?

e.g.. G obtained from (A,B) by adding columns,
(x,y) becoming (x,[y, 0,0,...,0]) for G.



Pure equilibrium: need|one extra column
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Strategic characterization of the index

We will show a conjecture by Josef Hofbauer:

Theorem:
For nondegenerate (A,B), Nash equilibrium (x,y):

iIndex (x,y) = +1

= [J]game G extending (A,B)
so that (x,y) Is the unigue equilibrium of G.

suffices: G obtained from (A,B) by adding columns,
(x,y) becoming (x,[y, 0,0,...,0]) for G.




Sub-matrices of equilibrium supports

Given: nondegenerate (A,B), A>0, B>O0,
Nash equilibrium (x,y).

A = (aij), B = (bj)
Axy = (aij) ie supp(x), je supp(y)
Bxy = (Dij) i supp(x), je supp(y)

Axy, Bxy have full rank |supp(x)],
nonzero determinants.



Index of an equilibrium (Shapley 1974)

Given: nondegenerate (A,B), A>0, B>O0,
Nash equilibrium (x,y).

0 Axy
Index (x,y) = — sign det
BxyT 0

= — sign det(Axy) det(Bxy) (—1)IsuppX)|

e {+1, -1}



Example: Matching Pennies
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Mixed equilibrium in Battle of Sexes
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Properties of the index

Independent of

—  positive constant added to all payoffs

— order of pure strategies

—  pure strategy payoffs outside equilibrium support

pure-strategy equilibria have index +1
sum of indices over all equilibriais +1

the two endpoints of any Lemke-Howson path are
equilibria of opposite index.



New "dual” construction
Given: nondegenerate m xn game (A,B), m<n.

. X subdivided into best response regions

. dualize X: best response regions for | — points j&

"unplayed strategy" facets of X - large unit vectors

technical construction: "dual polytopes”

e« vertices x of regions become simplices x4
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Construction of X2
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Incorporating the other player

So far: X2 subdivided, dualized
according to player Il's payoffs B

Now: for each vertex x of a best response region,
with labels k>m: bestresponse of player ||

or k<m: unplayed strategy of player |

. subdivide x2 into regions of player |'s best responses
where —-ifk>m: use column k of A
—ifk<m: player | "as if" playing k
(artificial unit vector payoff),

[0 picture X2 with labels 1...m only, equilibria: all labels.




subdivide x* via player I's best responses




-equilibrium iff
all labels 1...m

subdivide x*
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subdivide x*

-equilibrium iff 2
all labels 1...m

4/35 1/35 30/35

4/5 1/5 0 1
0 (10| 1 | 2 40/35
10/ 0 | O | 8 40/35
8| 8| 0| 8 40/35




The full dual construction




Equilibria have all m labels




Index = orientation




Lemke-Howson paths




Opposite index of endpoints




Summary

New construction

Triangulation reflects player |1’s best replies
Division player I’s best replies

e Intuitive definition of index

e lllustration of L-H algorithm and related index results
* Low dimension for easy visualization

Applications
o Strategic definition of index
« Components of equilibria / hyperstability
* Fixed point theory / Sperner's lemma



