Strategic Characterization of the Index of an Equilibrium

Arndt von Schemde

Bernhard von Stengel

Department of Mathematics London School of Economics

Theorem

Given:

- simplicial d-polytope P
- each vertex has a label $\in \{1, 2, ..., d\}$
- two (disjoint) completely labelled facets S, T of opposite orientation

Then

there are labelled points c₁, ..., c_k so that
 S, T are the only completely labelled facets of the convex hull of P ∪ { c₁, ..., c_k }

Topological proof for d > 2

Topological proof for d > 2

Nash equilibria of bimatrix games

Nash equilibrium =

pair of strategies x, y with

- x best response to y and
- y best response to x.

Mixed equilibria

only pure best responses can have probability > 0

Best responses to mixed strategy of player 1 **= B** payoffs to player II

Best responses to mixed strategy of player 1 **= B** payoffs to player II

Best responses to mixed strategy of player 1 **= B** payoffs to player II

Equilibrium = completely labeled strategy pair

Equilibrium = completely labeled strategy pair

Equilibrium = completely labeled strategy pair

Nondegenerate bimatrix games

Given: $m \times n$ bimatrix game (A,B)

 $supp(x) = \{ i | x_i > 0 \}$ $supp(y) = \{ j | y_j > 0 \}$

(A,B) nondegenerate $\iff \forall x \in X, y \in Y$:

 $|\{j | j \text{ best response to } x \}| \leq | \text{supp}(x) |$

 $|\{i \mid i \text{ best response to } y\}| \leq | \operatorname{supp}(y) |.$

Nondegeneracy via labels

 $m \times n$ bimatrix game (A,B) nondegenerate

 $\Leftrightarrow \quad \text{no } x \in X \text{ has more than } m \text{ labels,} \\ \text{no } y \in Y \text{ has more than } n \text{ labels.}$

- E.g. x with > m labels, s labels from { 1 , . . . , m } ,
- \Rightarrow > m–s labels from { m+1 , . . . , m+n }
- \Leftrightarrow > |supp(x)| best responses to x.
- \Rightarrow degenerate.

Example of a degenerate game

Making equilibria unique

Given:

```
nondegenerate (A,B), Nash equilibrium (x,y).
```

Question:

 \exists game G extending (A,B) by adding strategies so that (x,y) is the unique equilibrium of G?

e.g.: G obtained from (A,B) by adding *columns*, (x,y) becoming (x,[y, 0,0,...,0]) for G.

Strategic characterization of the index

We will show a conjecture by Josef Hofbauer:

Theorem:

For nondegenerate (A,B), Nash equilibrium (x,y):

index (x,y) = +1

```
\Leftrightarrow \exists \text{ game } G \text{ extending } (A,B)
so that (x,y) is the unique equilibrium of G.
```

suffices: G obtained from (A,B) by adding columns, (x,y) becoming (x,[y, 0,0,...,0]) for G.

Sub-matrices of equilibrium supports

Given: nondegenerate (A,B), A>0, B>0, Nash equilibrium (x,y).

 $A = (a_{ij}), B = (b_{ij})$

$$A_{xy} = (a_{ij}) \in \operatorname{supp}(x), j \in \operatorname{supp}(y)$$
$$B_{xy} = (b_{ij}) \in \operatorname{supp}(x), j \in \operatorname{supp}(y)$$

A_{xy}, B_{xy} have **full rank** |supp(x)|, nonzero determinants.

Index of an equilibrium (Shapley 1974)

Given: nondegenerate (A,B), A>0, B>0, Nash equilibrium (x,y).

Index
$$(x,y) = -$$
 sign det $\begin{bmatrix} 0 & A_{xy} \\ B_{xy}^T & 0 \end{bmatrix}$

 $= - \operatorname{sign} \operatorname{det}(A_{xy}) \operatorname{det}(B_{xy}) (-1)^{|\operatorname{supp}(x)|}$

$$\in \{+1, -1\}$$

Example: Matching Pennies

$$- sign det \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} det \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} (-1)^2 = +1$$

Mixed equilibrium in Battle of Sexes

$$- \operatorname{sign} \det \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \det \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} (-1)^2 = -1$$

Properties of the index

- independent of
 - positive constant added to all payoffs
 - order of pure strategies
 - pure strategy payoffs outside equilibrium support
- pure-strategy equilibria have index +1
- sum of indices over all equilibria is +1
- the two endpoints of any *Lemke-Howson path* are equilibria of opposite index.

New "dual" construction

Given: nondegenerate $m \times n$ game (A,B), $m \leq n$.

- X subdivided into best response regions
- dualize X: best response regions for $\mathbf{j} \rightarrow \mathbf{points} \mathbf{j}^{\Delta}$

"unplayed strategy" facets of $X \rightarrow$ large unit vectors technical construction: "dual polytopes"

• vertices x of regions become simplices x^{Δ}

Incorporating the other player

So far: X^Δ subdivided, dualized according to player II's payoffs B

 subdivide x[∆] into regions of player I's best responses where - if k > m : use column k of A - if k ≤ m : player I "as if" playing k (artificial unit vector payoff),

picture X^Δ with labels 1...m only, equilibria: all labels.

subdivide x^{Δ} via player l's best responses

subdivide \mathbf{x}^{Δ}

subdivide \mathbf{x}^{Δ}

The full dual construction

Equilibria have all m labels

Index = orientation

Lemke–Howson paths

Opposite index of endpoints

Summary

New construction

- Triangulation reflects player II's best replies
- Division player I's best replies
- Intuitive definition of index
- Illustration of L-H algorithm and related index results
- Low dimension for easy visualization

Applications

- Strategic definition of index
- Components of equilibria / hyperstability
- Fixed point theory / Sperner's lemma