Leadership Games

Bernhard von Stengel

Department of Mathematics London School of Economics

stengel@maths.lse.ac.uk

Part I:

Follower Payoffs in Symmetric Duopoly Games

Cournot vs. Stackelberg

Quantity competition - Cournot

payoff I:x(1 - y - x)I chooses xpayoff II:y(1 - x - y)II chooses y

Cournot (= Nash) x, y : 1/3, 1/3, payoffs 1/9, 1/9

Best response of II: y(x) = (1 - x) / 2

Stackelberg: commitment to x with response y(x)
Leader I, follower II: 1/2, 1/4, payoffs 1/8, 1/16

Symmetric Duopoly Games

- player I: strategy $x \ge 0$, payoff a(x,y)
- player II: strategy $y \ge 0$, payoff b(x,y) = a(y,x)
- Assume: unique best response r(y) to y: a(r(y), y) > a(x, y) $all x \neq r(y)$
 - and further assumptions

Leadership game: maximize a(x, r(x))for x = Lcompare:Leader payoffa(L, r(L))Nash payoffa(N, N)Follower payoffa(r(L), L)

Contour lines of a(x,y)

unique best responses r(y)

best response function r(y)

Only one symmetric equilibrium (N,N)

Theorem

Given: Symmetric duopoly game with

- **continuous** payoffs a(x,y), a(y,x), for x,y in intervals
- **unique** best responses r(y)
- payoff a(r(y), y) monotonic in y
- unique symmetric Nash equilibrium (N,N), r(N) = N.

Then the **follower** payoff **a**(**r**(L), L) is **either**

- worse than the Nash payoff a(N,N) or
- strictly better than the Leader payoff a(L, r(L))
 but does not belong to the interval

(a(N,N), a(L,r(L))] !

Interpretation

Endogenizing leadership ...

see: Hamilton, J. and S. Slutsky (1990), Endogenous timing in duopoly games: Stackelberg or Cournot equilibria. *Games Econ. Behav.* **2**, 29-46.

... in symmetric duopoly games is difficult!

- either both want to go first as follower is hurt
- or both want to go **second** as follower profits.
- ⇒ back to simultaneous game (or "Stackelberg war"), respectively equilibrium selection problem.

Part II:

Leadership with Commitment to Mixed Strategies

joint work with Shmuel Zamir

CNRS, Paris, and The Hebrew University, Jerusalem

Simultaneous vs. Leadership Game, Commit to Mixed Strategies

- 2 players, player I vs. player II, finite game
- simultaneous game,
 Nash equilibria,

compared with

- **leadership** game:

player I commits to a mixed strategy
player II always chooses best response
(subgame perfect equilibria)

The Quality Game

Inspection game

Issues Not Considered Here

- verifiability ("mixing" credible?)
- **observability** [Bagwell; Hurkens / van Damme]
- robustness: induce unique best response by changing commitment by ε [Maschler]
- Nash equilibria that survive commitment [Rosenthal] - very restrictive
 - "endogenous" commitment? Here: study consequences if commitment power given (natural for e.g. inspection games)

Our Results

- commitment always helps

-

- even in nongeneric games
 (will give more examples, Theorem)
- commitment as coordination device:
 even correlated equilibria are not better
 - 3 or more players: commitment may hurt

"Best" remote from "safe" commitment

Interval [5, 9] of leader payoffs

Symmetric game, 3 strategies

Symmetric game, 3 strategies

Arbitrary follower-payoffs

Identical Follower columns

T

Theorem

 $\begin{array}{ll} m \ x \ n \ payoff \ matrices: & A = [A_1 \ \ldots \ A_n], & B = [B_1 \ \ldots \ B_n] \\ X = \{ \ x \ge 0 \ | \ x_1 + \ \ldots + \ x_m = 1 \} \\ X(j) = \{ \ x \in X \ | \ j \ best \ response \ to \ x \ \} & (1 \le j \le n) \\ F = \{ \ j \ | \ X(j) \ full-dimensional \ \} & (any \ unique \ b.r. \ in \ F) \end{array}$

Theorem

 $\begin{array}{ll} m \ x \ n \ payoff \ matrices: & A = [A_1 \ \ldots \ A_n], & B = [B_1 \ \ldots \ B_n] \\ X = \{ \ x \geq 0 \ | \ x_1 + \ldots + x_m = 1 \} \\ X(j) = \{ \ x \in X \ | \ j \ best \ response \ to \ x \ \} & (1 \leq j \leq n) \\ F = \{ \ j \ | \ X(j) \ full-dimensional \ \} & (any \ unique \ b.r. \ in \ F) \end{array}$

Then in any subgame perfect equilibrium of the leadership game, the set of **leader** payoffs is [L, H], where

- $\begin{array}{rll} H = & MAX & MAX & x \ A_j \,, & \geq \ \mbox{all Nash payoffs to I} \,. \\ & 1 \leq j \leq n & x \in X(j) \end{array}$

Generic games

If the game is generic, then

in any subgame perfect equilibrium of the leadership game, the leader payoff is = L = H,

 $\begin{array}{lll} H = & MAX & MAX & x A_j, \\ & 1 \leq j \leq n & x \in X(j) \end{array}$

where **any Nash** equilibrium payoff to player I is $\leq H$.

"Pessimistic" Leader, Many Followers

- player I commits to mixed strategy x
- n followers play Nash equilibrium y of resulting n-player game (subgame perfection) from set N(x) [n = 1: N(x) = best responses to x.]
- player I gets payoff a(x, y)
- \Rightarrow then the **lowest** leadership payoff is

$$L = \sup \min_{x} a(x, y)$$

x y \end N(x)

... but in the subgame perfect equilibrium, the followers typically **don't** choose the worst response.

Commitment and correlated equilibria

Theorem:

In any subgame perfect equilibrium of the leadership game, the set of leader payoffs is [L, H], where any correlated equilibrium payoff to player I is \leq H.

Reminder: Correlated equilibrium = joint distribution **z**_{ij} on strategies i,j of player **I**, **II** fulfilling **incentive** constraints (for player **I**): for all i, **k**

$$\sum_{j} z_{ij} a_{ij} \ge \sum_{j} z_{ij} a_{kj}$$

and analogously for player II.

Proof:

In given CE, pick column j with largest conditional payoff C to I,

Commit to that column as distribution on

rows, response j

subgame perfect by incentive constraints.

Then CE-payoff $\leq C \leq H$.

Weakly correlated equilibrium [Moulin & Vial, 1978]

- as in CE: correlation device with joint prob's **z**_{ij}
- now players can either
 commit to using the recommended action
 or choose their own strategy, knowing only
 marginal probabilities of device.
 - Equilibrium: prefer **device**, for player I,

 $\sum_{i,j} z_{ij} a_{ij} \ge \sum_j (\sum_{i} z_{ij}) a_{kj}$ all k = 1,..., m,

analogously player II.

("all i " instead of \sum_{i} = incentive constraints of CE)

Example: Rock-Scissors-Paper

WCE-payoff = 0

1/3	0	0
0	1/3	0
0	0	1/3

Example: Rock-Scissors-Paper

WCE-payoff = 0 Nash = CE = maxmin = leader-payoff = -1/3 < 0 !

3 (or more) players

- player I commits to mixed strategy
- II, III play equilibrium of resulting 2-player game (subgame perfection)
- \Rightarrow commitment may hurt player **I** !

Example:

II and III team with identical, zero-sum payoffs against I.

Then commitment by I helps II, III to co-ordinate, usually worse for I.

Example: Leader vs. 2–player team

I:

R