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Part I:

Follower Payoffs in
Symmetric Duopoly Games



Cournot vs. Stackelberg

Quantity competition - Cournot

payoff I: x(1 − y − x)     I  chooses x
payoff II: y(1 − x − y)    II chooses y

Cournot (= Nash)  x, y : 1/3, 1/3, payoffs 1/9, 1/9

Best response of  II: y(x) = (1 − x) / 2

Stackelberg: commitment to x with response y(x)

Leader I, follower II: 1/2, 1/4, payoffs 1/8, 1/16



Symmetric Duopoly Games

player I: strategy  x �  0, payoff  a(x,y) 

player II: strategy  y �  0, payoff  b(x,y) = a(y,x)   

Assume:      -  unique best response  r(y) to y:

a(r(y), y)  >  a(x, y) all x 
�
 r(y)

     - and further assumptions

Leadership game: maximize  a(x, r(x)) for  x = L

compare: Leader payoff  a(L, r(L)) 
Nash payoff a(N, N)
Follower payoff a(r(L), L) 
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r(x) = x  only when  x = N

r(x) > x  when  x < N

r(x) < x  when  x > N
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Theorem
Given: Symmetric duopoly game with

- continuous payoffs  a(x,y),  a(y,x),  for x,y in intervals

- unique best responses  r(y)

- payoff  a(r(y), y) monotonic in y

-  unique symmetric Nash equilibrium (N,N),  r(N) = N.

Then the follower payoff  a(r(L), L) is either

- worse than the Nash payoff  a(N,N)  or

- strictly better than the Leader payoff a(L, r(L))

but does not belong to the interval

( a(N,N),  a(L,r(L)) ]  !



Interpretation

Endogenizing leadership ...

see: Hamilton, J. and S. Slutsky (1990),
Endogenous timing in duopoly games: Stackelberg or
Cournot equilibria. Games Econ. Behav. 2, 29 �46.

... in symmetric duopoly games is difficult!

either - both want to go first as follower is hurt

or - both want to go second as follower profits.

⇒ back to simultaneous game (or "Stackelberg war"),
respectively equilibrium selection problem.



Part II:

Leadership with Commitment 
to Mixed Strategies

joint work with  Shmuel Zamir

CNRS, Paris, and 
The Hebrew University, Jerusalem 



Simultaneous vs. Leadership Game,
Commit to Mixed Strategies

- 2 players, player I  vs. player II, finite game

- simultaneous game,
Nash equilibria, 

compared with 

- leadership game:
  player I commits to a mixed strategy
  player II always chooses best response
  (subgame perfect equilibria)
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Issues Not Considered Here

- verifiability ("mixing" credible?)

- observability [Bagwell; Hurkens / van Damme]

- robustness: induce unique best response by
changing commitment by  ε  [Maschler]

- Nash equilibria that survive commitment
[Rosenthal] - very restrictive

- "endogenous" commitment?
Here: study consequences if 
commitment power given
(natural for e.g. inspection games)



Our Results 

- commitment always helps

- even in nongeneric games
(will give more examples, Theorem)

- commitment as coordination device:
  even correlated equilibria are not better

- 3 or more players: commitment may hurt
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Symmetric game, 3 strategies
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Symmetric game, 3 strategies
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Arbitrary follower−payoffs
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Identical Follower columns



Theorem
m x n payoff matrices: A = [A1 . . . An],  B = [B1 . . . Bn]

X = { x ≥ 0 | x1 + ... + xm = 1}

X( j ) = { x �  X | j  best response to x }      (1 ≤ j ≤ n)

F = { j | X( j )  full-dimensional }    (any unique b.r. in F)



Theorem
m x n payoff matrices: A = [A1 . . . An],  B = [B1 . . . Bn]

X = { x ≥ 0 | x1 + ... + xm = 1}

X( j ) = { x �  X | j  best response to x }      (1 ≤ j ≤ n)

F = { j | X( j )  full-dimensional }    (any unique b.r. in F)

Then in any subgame perfect equilibrium of the leadership
game, the set of leader payoffs is [L, H], where

L = MAX  MAX       MIN        x Ak ,   ≥   some Nash payoff,
       j � F    x � X(j)    k: Bk=Bj 

H =    MAX     MAX     x Aj ,           ≥   all Nash payoffs to I .
         1≤ j ≤ n    x � X(j)   



Generic games

If the game is generic, then  

in any subgame perfect equilibrium of the 
leadership game, the leader payoff is  = L = H,

         H =    MAX     MAX     x Aj ,    
                   1≤ j ≤ n    x � X(j)   

where any Nash equilibrium payoff 
to player I  is  ≤  H .



"Pessimistic" Leader, Many Followers

- player I commits to mixed strategy x

- n followers  play Nash equilibrium  y 
of resulting n-player game (subgame perfection) 
from set N(x)  [ n = 1:  N(x) = best responses to x. ]

- player I gets payoff  a(x, y)

⇒ then the lowest  leadership payoff is

L = sup      min       a(x, y)
x y � N(x)

... but in the subgame perfect equilibrium, the 
    followers typically don't  choose the worst response.



Commitment and correlated equilibria

Theorem:

In any subgame perfect equilibrium of the 
leadership game, the set of leader payoffs is [L, H], 
where any correlated equilibrium payoff 
to player I  is  ≤  H .

Reminder: Correlated equilibrium =
joint distribution  zij  on  strategies  i,j  of player I, II
fulfilling incentive constraints (for player I):  for all i, k

∑j  zij aij  ≥  ∑j  zij akj  

and analogously for player II. 
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.



Weakly correlated equilibrium
[Moulin & Vial, 1978]

- as in CE: correlation device with joint prob's zij

- now players can either 
commit to using the recommended action 
or choose their own strategy, knowing only
marginal probabilities of device.

- Equilibrium: prefer device, for player I,

∑i,j  zij aij  ≥  ∑j ( ∑i  zij ) akj all k = 1,..., m,

analogously  player II.
(„all  i “  instead of  ∑i  = incentive constraints of CE)
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  Example: Rock−Scissors−Paper
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  Example: Rock−Scissors−Paper

 

WCE−payoff = 0  



3 (or more) players

- player I commits to mixed strategy

- II, III play equilibrium of resulting 2-player game
(subgame perfection)

⇒ commitment may hurt player I !

Example: 

II and III team with identical, 
zero-sum payoffs against I.

Then commitment by I  helps II, III to 
co-ordinate, usually worse for I . 
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     Example: Leader vs. 2−player team      
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