Leadership Games

Bernhard von Stengel

Department of Mathematics
London School of Economics

stengel@maths.Ise.ac.uk

Part I:

Follower Payoffs in Symmetric Duopoly Games

Cournot vs. Stackelberg

Quantity competition - Cournot
payoff I: $\quad x(1-y-x) \quad$ I chooses x
payoff II: $\quad y(1-x-y) \quad$ II chooses y
Cournot (= Nash) x, y : 1/3, 1/3, payoffs 1/9, 1/9
Best response of II: $\quad y(x)=(1-x) / 2$
Stackelberg: commitment to x with response $y(x)$
Leader I, follower II: $\quad 1 / 2,1 / 4$, payoffs $1 / 8,1 / 16$

Symmetric Duopoly Games

player I: \quad strategy $x \geq 0$, payoff $a(x, y)$
player II: \quad strategy $y \geq 0, \quad$ payoff $b(x, y)=a(y, x)$
Assume: - unique best response $r(y)$ to y :

$$
a(r(y), y)>a(x, y) \quad \text { all } x \neq r(y)
$$

- and further assumptions

Leadership game: maximize $a(x, r(x))$ for $x=L$
compare:

Leader payoff
Nash payoff a(N, N)
Follower payoff $a(r(L), L)$

Contour lines of $\mathrm{a}(\mathrm{x}, \mathrm{y})$

unique best responses $\mathrm{r}(\mathrm{y})$

best response function r(y)

best response function $\mathrm{r}(\mathrm{y})$

Only one symmetric equilibrium (N,N)

$r(x)=x$ only when $x=N$

Leadership payoff $a(L, r(L))$

Follower payoff a(r(L), L)

Theorem

Given: Symmetric duopoly game with

- continuous payoffs $a(x, y), a(y, x)$, for x, y in intervals
- unique best responses $r(y)$
- payoff $a(r(y), y)$ monotonic in y
- unique symmetric Nash equilibrium $(N, N), r(N)=N$.

Then the follower payoff $a(r(L), L)$ is either

- worse than the

Nash payoff $a(N, N)$ or

- \quad strictly better than the Leader payoff $a(L, r(L))$
but does not belong to the interval
($a(N, N), a(L, r(L))]!$

Interpretation

Endogenizing leadership ...

see: Hamilton, J. and S. Slutsky (1990), Endogenous timing in duopoly games: Stackelberg or Cournot equilibria. Games Econ. Behav. 2, 29-46.
... in symmetric duopoly games is difficult!
either - both want to go first as follower is hurt
or - both want to go second as follower profits.
\Rightarrow back to simultaneous game (or "Stackelberg war"), respectively equilibrium selection problem.

Part II:

Leadership with Commitment to Mixed Strategies

joint work with Shmuel Zamir

CNRS, Paris, and
The Hebrew University, Jerusalem

Simultaneous vs. Leadership Game, Commit to Mixed Strategies

- 2 players, player I vs. player II, finite game
- simultaneous game, Nash equilibria,
compared with
- leadership game:
player I commits to a mixed strategy
player II always chooses best response (subgame perfect equilibria)

Leadership Game

The Quality Game

Inspection game

Issues Not Considered Here

- verifiability ("mixing" credible?)
- observability [Bagwell; Hurkens / van Damme]
- robustness: induce unique best response by changing commitment by ε [Maschler]
- Nash equilibria that survive commitment [Rosenthal] - very restrictive
- "endogenous" commitment? Here: study consequences if commitment power given (natural for e.g. inspection games)

Our Results

- commitment always helps
- even in nongeneric games (will give more examples, Theorem)
- commitment as coordination device: even correlated equilibria are not better
- $\quad 3$ or more players: commitment may hurt

"Best" remote from "safe" commitment

Interval [5, 9] of leader payoffs

Symmetric game, 3 strategies

	l		c		r	
		0		2		1
	0		1		0	
M	2	1		4		5
			4		0	
B		0		0		2
	1		5		2	

Symmetric game, 3 strategies

II			c		r	
		0		2		1
	0		1		0	
M	2	1		4		5
			4		0	
B		0		0		2
	1		5		2	

Arbitrary follower-payoffs

Identical Follower columns

Theorem

$m \times n$ payoff matrices: $\quad A=\left[A_{1} \ldots A_{n}\right], \quad B=\left[B_{1} \ldots B_{n}\right]$ $X=\left\{x \geq 0 \mid x_{1}+\ldots+x_{m}=1\right\}$
$X(j)=\{x \in X \mid j$ best response to $x\} \quad(1 \leq j \leq n)$
$F=\{j \mid X(j)$ full-dimensional $\} \quad$ (any unique b.r. in F)

Theorem

$m \times n$ payoff matrices: $A=\left[A_{1} \ldots A_{n}\right], \quad B=\left[B_{1} \ldots B_{n}\right]$ $X=\left\{x \geq 0 \mid x_{1}+\ldots+x_{m}=1\right\}$
$X(j)=\{x \in X \mid j$ best response to $x\} \quad(1 \leq j \leq n)$
$F=\{j \mid X(j)$ full-dimensional $\} \quad$ (any unique b.r. in F)

Then in any subgame perfect equilibrium of the leadership game, the set of leader payoffs is $[L, H]$, where
$\mathrm{L}=$ MAX MAX MIN $\quad x A_{k}, \geq$ some Nash payoff, $j \in F \quad x \in X(j) \quad k: B_{k}=B_{j}$
$H=\underset{1 \leq j \leq n}{\operatorname{MAX}} \quad \underset{x \in X(j)}{\operatorname{MAX}} \quad x A_{j}, \quad \geq$ all Nash payoffs to I.

Generic games

If the game is generic, then

in any subgame perfect equilibrium of the leadership game, the leader payoff is $=L=H$,

$$
H=\underset{1 \leq j \leq n}{M A X} \quad \underset{x \in X(j)}{M A X} \quad x A_{j},
$$

where any Nash equilibrium payoff to player I is $\leq \mathrm{H}$.

"Pessimistic" Leader, Many Followers

- player I commits to mixed strategy x
- n followers play Nash equilibrium y of resulting n-player game (subgame perfection) from set $N(x) \quad[n=1: N(x)=$ best responses to x.]
- player I gets payoff $a(x, y)$
$\Rightarrow \quad$ then the lowest leadership payoff is

$$
L=\sup _{x} \min _{y \in N(x)} a(x, y)
$$

... but in the subgame perfect equilibrium, the followers typically don't choose the worst response.

Commitment and correlated equilibria

Theorem:

In any subgame perfect equilibrium of the leadership game, the set of leader payoffs is [L, H], where any correlated equilibrium payoff to player I is $\leq \mathrm{H}$.

Reminder: Correlated equilibrium = joint distribution \mathbf{z}_{ij} on strategies i, j of player I, II fulfilling incentive constraints (for player I): for all i, k

$$
\sum_{\mathrm{j}} \mathrm{z}_{\mathrm{ij}} \mathrm{a}_{\mathrm{ij}} \geq \sum_{\mathrm{j}} \mathrm{z}_{\mathrm{ij}} a_{\mathrm{kj}}
$$

and analogously for player II.

Proof:

In given CE, pick column j with largest conditional payoff C to I ,
Commit to that column as distribution on

$$
\begin{array}{|c|c|}
\hline z_{1 \mathrm{j}} & \\
\mathrm{z}_{2 \mathrm{j}} & \\
\cdot & \\
\cdot & \\
\mathrm{z}_{\mathrm{mj}} & \\
\hline
\end{array}
$$

rows, response j
subgame perfect by incentive constraints.
Then CE-payoff $\leq \mathrm{C} \leq \mathrm{H}$.

Weakly correlated equilibrium

[Moulin \& Vial, 1978]

- as in CE: correlation device with joint prob's $\mathbf{z i j}_{\mathbf{i j}}$
- now players can either
commit to using the recommended action or choose their own strategy, knowing only marginal probabilities of device.
- Equilibrium: prefer device, for player I,

$$
\sum_{i, j} z_{i j} a_{i j} \geq \sum_{j}\left(\sum_{i} z_{i j}\right) a_{k j} \quad \text { all } k=1, \ldots, m,
$$

analogously player II.
(,,all $\mathrm{i}^{\text {" }}$ instead of $\sum \mathrm{i}=$ incentive constraints of CE)

Example: Rock-Scissors-Paper

 WCE-payoff $=0$

$1 / 3$	0	0
0	$1 / 3$	0
0	0	$1 / 3$

Example: Rock-Scissors-Paper

I	r		s		p	
	0	0		-2		1
			1		-2	
		1		0		-2
	-2		0		1	
		-2		1		0
P	1	-2			0	

WCE-payoff = 0
Nash = CE $=$ maxmin $=$ leader-payoff $=-1 / 3<0$!

3 (or more) players

- player I commits to mixed strategy
- II, III play equilibrium of resulting 2-player game (subgame perfection)
\Rightarrow commitment may hurt player I !

Example:

II and III team with identical, zero-sum payoffs against I.
Then commitment by I helps II, III to co-ordinate, usually worse for I .

Example: Leader vs. 2-player team

${ }^{\text {III }}$		p		q		
P	-1	1		0	0	0
Q	0	0		-4	4	4
I						

