Pathways to Equilibria, Pretty Pictures and Diagrams (PPAD)

Bernhard von Stengel

partly joint work with: Marta Casetti, Julian Merschen, Lászlo Végh

> Department of Mathematics London School of Economics

2-player game: find one Nash equilibrium

2-NASH ∈ PPAD (Polynomial Parity Argument with Direction)

Implicit digraph with indegrees and outdegrees ≤ 1 is a set of [nodes], paths and cycles:

Parity argument: number of **sources** of paths = number of **sinks** Comput. problem: given one source **0**, find another source or sink [Chen/Deng 2006] 2-NASH is PPAD-complete.

square game matrix A = payoffs to row player

equilibrium: only optimal strategies are played

plot polytope with strategy weights z1, z2, z3

with payoffs (scaled to 1) and labels for binding inequalities

equilibrium = completely labeled point

start path with artificial equilibrium z=0

start path with **artificial equilibrium** z=0, choose e.g.

leave facet with label 1, find duplicate label 3

leave facet with old label 3, find duplicate label 2

leave facet with old label 2, find duplicate label 3

leave facet with old label 3, find missing label 1

Symmetric Nash equilibria of symmetric games equilibria (including artificial equilibrium) = endpoints of paths

two completely labeled vertices

path because at most two neighbours ("doors" in castle)

orientation of edges: 2 on left, 3 on right

opposite orientation ("sign") of endpoints

Labeled polytope P

Let $a_j \in \mathbb{R}^m$, $\beta_j \in \mathbb{R}$,

$$\boldsymbol{P} = \{\boldsymbol{x} \in \mathbb{R}^m \mid \boldsymbol{a}_j \boldsymbol{x} \leq \beta_j, \ 1 \leq j \leq n\},\$$

 $\begin{array}{ll} \text{let facet} & F_j = \{ x \in P \mid a_j x = \beta_j \} \text{ have} \\ \text{label} & I(j) \in \{1, \dots, m\}. \end{array}$

Assume **P** is a **simple** polytope (no $x \in P$ on > m facets) \Rightarrow each vertex x on m facets = m linearly independent equations.

x completely labeled $\Leftrightarrow \{I(j) \mid x \in F_j\} = \{1, \dots, m\}.$

Completely labeled points come in pairs

Theorem [Parity Argument]

Let **P** be a labeled polytope.

Then *P* has an even number of completely labeled vertices.

Completely labeled points come in pairs of opposite sign

Theorem [Parity Argument with Direction]

Let **P** be a labeled polytope.

Then **P** has an **even** number of completely labeled vertices. Half of these have sign \bigcirc , half have sign \oplus .

Completely labeled points come in pairs of opposite sign

Theorem [Parity Argument with Direction]

Let **P** be a labeled polytope.

Then **P** has an **even** number of completely labeled vertices. Half of these have sign \bigcirc , half have sign \oplus .

sign of completely labeled **x** is **sign of determinant** of facet normal vectors in order of their labels: if (e.g.) facet $a_i x = \beta_i$ has label i = 1, 2, ..., m, then

 $sign(\mathbf{x}) = sign |a_1 a_2 \cdots a_m|$

Lemma

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ be adjacent vertices of a simple polytope \mathbf{P}

Lemma

Let $x, y \in \mathbb{R}^m$ be adjacent vertices of a simple polytope P with facet normals c, a_2, \ldots, a_m for x and d, a_2, \ldots, a_m for y.

Lemma

Let $x, y \in \mathbb{R}^m$ be adjacent vertices of a simple polytope Pwith facet normals c, a_2, \ldots, a_m for x and d, a_2, \ldots, a_m for y. Then $|c a_2 \cdots a_m|$ and $|d a_2 \cdots a_m|$ have opposite sign.

Proof :

$$cx = \beta_0$$

$$dy = \beta_1$$

$$a_2x = \beta_2$$

$$\vdots$$

$$a_mx = \beta_m$$

$$a_my = \beta_m$$

Proof :

 $c\mathbf{x} = \beta_0$ $d\mathbf{y} = \beta_1$ $\mathbf{a_2x} = \beta_2 \qquad \mathbf{a_2y} = \beta_2$ $\vdots \qquad \vdots$ $\mathbf{a_mx} = \beta_m \qquad \mathbf{a_my} = \beta_m$ Let $(\gamma, \delta, \alpha_2, \dots, \alpha_m) \neq (\mathbf{0}, \mathbf{0}, \mathbf{0}, \dots, \mathbf{0})$ with $\gamma \mathbf{c} + \delta \mathbf{d} + \alpha_2 \mathbf{a_2} + \dots + \alpha_m \mathbf{a_m} = \mathbf{0}$
Proof :

 $\mathbf{CX} = \beta_0$ $d\mathbf{v} = \beta_1$ $a_2 \mathbf{x} = \beta_2$ $a_2 \mathbf{y} = \beta_2$ · · · · · · $a_m \mathbf{X} = \beta_m \qquad a_m \mathbf{V} = \beta_m$ Let $(\gamma, \delta, \alpha_2, \ldots, \alpha_m) \neq (0, 0, 0, \ldots, 0)$ with $\gamma \mathbf{c} + \delta \mathbf{d} + \alpha_2 \mathbf{a}_2 + \cdots + \alpha_m \mathbf{a}_m = \mathbf{0}$ $\Rightarrow \gamma \neq \mathbf{0}, \ \delta \neq \mathbf{0},$ $(\gamma \mathbf{c} + \delta \mathbf{d})\mathbf{x} = (\gamma \mathbf{c} + \delta \mathbf{d})\mathbf{v}$

Proof :

$$cx = \beta_0 \qquad cy < \beta_0$$

$$dx < \beta_1 \qquad dy = \beta_1$$

$$a_2x = \beta_2 \qquad a_2y = \beta_2$$

$$\vdots \qquad \vdots$$

$$a_mx = \beta_m \qquad a_my = \beta_m$$
Let $(\gamma, \delta, \alpha_2, \dots, \alpha_m) \neq (0, 0, 0, \dots, 0)$ with
 $\gamma c + \delta d + \alpha_2 a_2 + \dots + \alpha_m a_m = 0$

$$\Rightarrow \gamma \neq 0, \quad \delta \neq 0,$$
 $(\gamma c + \delta d)x = (\gamma c + \delta d)y, \qquad \gamma (cx - cy) = \delta (dy - dx)$

Proof :

$$cx = \beta_0 \qquad cy < \beta_0$$

$$dx < \beta_1 \qquad dy = \beta_1$$

$$a_2x = \beta_2 \qquad a_2y = \beta_2$$

$$\vdots \qquad \vdots$$

$$a_mx = \beta_m \qquad a_my = \beta_m$$
Let $(\gamma, \delta, \alpha_2, \dots, \alpha_m) \neq (0, 0, 0, \dots, 0)$ with
$$\gamma c + \delta d + \alpha_2 a_2 + \dots + \alpha_m a_m = 0$$

$$\Rightarrow \gamma \neq 0, \quad \delta \neq 0,$$
 $(\gamma c + \delta d)x = (\gamma c + \delta d)y, \qquad \gamma (cx - cy) = \delta(dy - dx)$

$$\Rightarrow \gamma \text{ and } \delta \text{ have same sign}$$

Proof :

$$cx = \beta_0 \qquad cy < \beta_0$$

$$dx < \beta_1 \qquad dy = \beta_1$$

$$a_2x = \beta_2 \qquad a_2y = \beta_2$$

$$\vdots \qquad \vdots$$

$$a_mx = \beta_m \qquad a_my = \beta_m$$
Let $(\gamma, \delta, \alpha_2, \dots, \alpha_m) \neq (0, 0, 0, \dots, 0)$ with
 $\gamma c + \delta d + \alpha_2 a_2 + \dots + \alpha_m a_m = 0$

$$\Rightarrow \gamma \neq 0, \quad \delta \neq 0,$$
 $(\gamma c + \delta d)x = (\gamma c + \delta d)y, \qquad \gamma (cx - cy) = \delta (dy - dx)$

$$\Rightarrow \gamma \text{ and } \delta \text{ have same sign,}$$
 $|(\gamma c + \delta d) a_2 \cdots a_m| = \gamma |c|a_2 \cdots a_m| + \delta |d|a_2 \cdots a_m| = 0$

Proof:

$$cx = \beta_0 \qquad cy < \beta_0$$

$$dx < \beta_1 \qquad dy = \beta_1$$

$$a_2x = \beta_2 \qquad a_2y = \beta_2$$

$$\vdots \qquad \vdots$$

$$a_mx = \beta_m \qquad a_my = \beta_m$$
Let $(\gamma, \delta, \alpha_2, \dots, \alpha_m) \neq (0, 0, 0, \dots, 0)$ with
 $\gamma c + \delta d + \alpha_2 a_2 + \dots + \alpha_m a_m = 0$

$$\Rightarrow \gamma \neq 0, \quad \delta \neq 0,$$
 $(\gamma c + \delta d)x = (\gamma c + \delta d)y, \qquad \gamma(cx - cy) = \delta(dy - dx)$

$$\Rightarrow \gamma \text{ and } \delta \text{ have same sign,}$$

$$|(\gamma c + \delta d) a_2 \cdots a_m| = \gamma |c a_2 \cdots a_m| + \delta |d a_2 \cdots a_m| = 0$$

$$\Rightarrow |c a_2 \cdots a_m| \text{ and } |d a_2 \cdots a_m| \text{ have opposite sign, QED.}$$

Facet normal vectors a1 a2 a3 c1 c2 c3, labels 1 2 3 1 2 3

Start with $a_1 a_2 a_3$, sign \ominus

Start with $a_1 a_2 a_3$, sign \bigcirc , label **1** missing, $a_1 \rightarrow c_3$ gives sign \oplus

Switch columns c_3 and a_3 in determinant: back to sign \ominus

next pivot $a_3 \rightarrow c_2$ gives sign \oplus

Switch columns c_2 and a_2 in determinant: back to sign \ominus

next pivot $a_2 \rightarrow a_3$ gives sign \oplus

Switch columns a_3 and c_3 in determinant: back to sign \bigcirc

Last pivot $c_3 \rightarrow c_1$ gives sign \oplus , opposite to starting sign \bigcirc .

Only need: sign-switching of pivots and column exchanges

Recall: $\boldsymbol{m} \times \boldsymbol{m}$ matrix \boldsymbol{C} ,

$$\boldsymbol{P} = \{\boldsymbol{z} \in \mathbb{R}^m \mid -\boldsymbol{z} \leq \boldsymbol{0}, \ \boldsymbol{C}\boldsymbol{z} \leq \boldsymbol{1}\}$$

with 2m inequalities labeled $1, \ldots, m, 1, \ldots, m$.

Recall: $\boldsymbol{m} \times \boldsymbol{m}$ matrix \boldsymbol{C} ,

$$\boldsymbol{P} = \{\boldsymbol{z} \in \mathbb{R}^m \mid -\boldsymbol{z} \leq \boldsymbol{0}, \ \boldsymbol{C}\boldsymbol{z} \leq \boldsymbol{1}\}$$

with **2***m* inequalities labeled **1**, ..., *m*, **1**, ..., *m*.

Completely labeled $z \neq 0 \Leftrightarrow$

Nash equilibrium (z, z) of game (C, C^{\top})

Recall: $\boldsymbol{m} \times \boldsymbol{m}$ matrix \boldsymbol{C} ,

$$\boldsymbol{P} = \{\boldsymbol{z} \in \mathbb{R}^m \mid -\boldsymbol{z} \leq \boldsymbol{0}, \ \boldsymbol{C}\boldsymbol{z} \leq \boldsymbol{1}\}$$

with 2m inequalities labeled $1, \ldots, m, 1, \ldots, m$.

Completely labeled $z \neq 0 \Leftrightarrow$ Nash equilibrium (z, z) of game (C, C^{\top})

Normalize sign of "artificial equilibrium" **0** to \bigcirc , in general

$$index(z) = sign(z) \cdot (-1)^{m+1}$$

Recall: $\boldsymbol{m} \times \boldsymbol{m}$ matrix \boldsymbol{C} ,

$$\boldsymbol{P} = \{\boldsymbol{z} \in \mathbb{R}^m \mid -\boldsymbol{z} \leq \boldsymbol{0}, \ \boldsymbol{C}\boldsymbol{z} \leq \boldsymbol{1} \}$$

with 2m inequalities labeled $1, \ldots, m, 1, \ldots, m$.

bimatrix game (A, B):

$$C = \begin{pmatrix} 0 & A \\ B^{\top} & 0 \end{pmatrix}, \quad z = (x, y)$$

Completely labeled $(x, y) \neq (0, 0) \Leftrightarrow$ Nash equilibrium (x, y) of game (A, B)

Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (A, B) has an odd number of equilibria, one more of index \oplus than of index \bigcirc .

Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (A, B) has an odd number of equilibria, one more of index \oplus than of index \bigcirc .

[*Proof:* Endpoints of pivoting paths have opposite index \bigcirc and \bigoplus .]

Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (A, B) has an odd number of equilibria, one more of index \oplus than of index \bigcirc .

[*Proof:* Endpoints of pivoting paths have opposite index \bigcirc and \bigoplus .]

Equilibria of index \oplus include every

- pure-strategy equilibrium
- unique equilibrium
- dynamically stable equilibrium [Hofbauer 2003]

Strategic characterization of the index

Theorem [von Schemde / von Stengel 2004]

An equilibrium of a nondegenerate bimatrix game has index \oplus

⇔ it is the **unique** equilibrium in a larger game that has suitable additional strategies for one player.

Strategic characterization of the index

Theorem [von Schemde / von Stengel 2004]

An equilibrium of a nondegenerate bimatrix game has index \oplus

⇔ it is the **unique** equilibrium in a larger game that has suitable additional strategies for one player.

Theorem [Balthasar / von Stengel 2009]

A symmetric equilibrium of a nondegenerate symmetric bimatrix game has symmetric index \oplus

⇔ it is the **unique** equilibrium in a larger *symmetric* game that has suitable additional strategies for both players.

- Graph $G = (V, E), V = \{1, ..., n\}$
- orient each edge *ab* ∈ *E* as (*a*, *b*) or (*b*, *a*)
- perfect matching *M* ⊂ *E* of *G*
- for the edges *ab* of *M* (in any sequence), write down endpoints
 a, *b* in the order of the orientation of the edge. Define

- Graph $G = (V, E), V = \{1, ..., n\}$
- orient each edge *ab* ∈ *E* as (*a*, *b*) or (*b*, *a*)
- perfect matching *M* ⊂ *E* of *G*
- for the edges *ab* of *M* (in any sequence), write down endpoints
 a, *b* in the order of the orientation of the edge. Define

- Graph $G = (V, E), V = \{1, ..., n\}$
- orient each edge *ab* ∈ *E* as (*a*, *b*) or (*b*, *a*)
- perfect matching *M* ⊂ *E* of *G*
- for the edges *ab* of *M* (in any sequence), write down endpoints
 a, *b* in the order of the orientation of the edge. Define

- Graph $G = (V, E), V = \{1, ..., n\}$
- orient each edge *ab* ∈ *E* as (*a*, *b*) or (*b*, *a*)
- perfect matching M ⊂ E of G
- for the edges *ab* of *M* (in any sequence), write down endpoints
 a, *b* in the order of the orientation of the edge. Define

- Graph $G = (V, E), V = \{1, ..., n\}$
- orient each edge *ab* ∈ *E* as (*a*, *b*) or (*b*, *a*)
- perfect matching M ⊂ E of G
- for the edges *ab* of *M* (in any sequence), write down endpoints
 a, *b* in the order of the orientation of the edge. Define

- Graph $G = (V, E), V = \{1, ..., n\}$
- orient each edge *ab* ∈ *E* as (*a*, *b*) or (*b*, *a*)
- perfect matching *M* ⊂ *E* of *G*
- for the edges *ab* of *M* (in any sequence), write down endpoints
 a, *b* in the order of the orientation of the edge. Define

Euler graphs

Euler graph

• every node has even degree (= number of neighbours)

Euler graphs

Euler graph

- every node has even degree (= number of neighbours)
- has Eulerian orientation (indegree = outdegree)

Euler graphs ... have tours

Euler graph

- every node has even degree (= number of neighbours)
- has Eulerian orientation (indegree = outdegree) ... and tour

Signs of matchings in Euler graphs

Theorem

A graph with an Eulerian orientation has as many perfect matchings of sign \oplus as of sign \bigcirc .

Signs of matchings in Euler graphs

Theorem

A graph with an Eulerian orientation has as many perfect matchings of sign \oplus as of sign \bigcirc .

Proof :

Any two perfect matchings are connected by a **pivoting path** which connects matchings of opposite sign.

Finding a second perfect matching in an Euler graph 12 34 56 23 34 56

Finding a second perfect matching in an Euler graph 12 34 56 23 34 56 5 1

12	34	56
2 <u>3</u>	34	56
23	4 <u>5</u>	56
23	4 5	6 <u>4</u>
23	5 <u>6</u>	64
23	56	4 <u>2</u>
<u>3</u> 4	56	42

Finding a second perfect matching in an Euler graph \oplus ─ 23 (+)

A computational problem

Input: Graph G = (V, E) with Eulerian orientation and perfect matching of sign \oplus .

Output: A perfect matching with sign \bigcirc .

A computational problem

- Input: Graph G = (V, E) with Eulerian orientation and perfect matching of sign \oplus .
- **Output**: A perfect matching with sign \bigcirc .

The pivoting algorithm finds this

- in linear time for bipartite graphs
- but may take exponential time in general [Morris 1994]

A computational problem

- Input: Graph G = (V, E) with Eulerian orientation and perfect matching of sign \oplus .
- **Output**: A perfect matching with sign \bigcirc .

The pivoting algorithm finds this

- in linear time for bipartite graphs
- but may take exponential time in general [Morris 1994]
- Note: A second matching can be found in polynomial time [Edmonds 1965], but not with sign \bigcirc .

Related difficult problem: Pfaffian orientations of graphs.

Finding a second matching of opposite sign

Theorem [Végh / von Stengel 2014]

Given a graph G = (V, E) with an Eulerian orientation and a perfect matching of sign \oplus , a matching of sign \bigcirc can be found in time near-linear* in |E|.
Finding a second matching of opposite sign

Theorem [Végh / von Stengel 2014]

Given a graph G = (V, E) with an Eulerian orientation and a perfect matching of sign \oplus , a matching of sign \odot can be found in time near-linear* in |E|.

Suffices to find **sign-switching cycle**.

Finding a second matching of opposite sign

Theorem [Végh / von Stengel 2014]

Given a graph G = (V, E) with an Eulerian orientation and a perfect matching of sign \oplus , a matching of sign \bigcirc can be found in time near-linear* in |E|.

Suffices to find **sign-switching cycle**.

* up to factor given by inverse Ackermann function lpha .

Sign-switching cycle (SSC)

Given an oriented graph and a perfect matching *M*, a **sign-switching cycle** is a cycle *C* with every other edge in *M* and an **even** number of forward-pointing edges.

 \Rightarrow **M** \triangle **C** is a matching of opposite sign to **M**.

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

2. delete directed cycle of unmatched edges

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

2. delete directed cycle of unmatched edges

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

2. delete directed cycle of unmatched edges

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

2. delete directed cycle of unmatched edges

until trivial SSC found

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

2. delete directed cycle of unmatched edges

until trivial SSC found

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

2. delete directed cycle of unmatched edges

until trivial SSC found, re-insert contracted edge pairs

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

2. delete directed cycle of unmatched edges

until trivial SSC found, re-insert contracted edge pairs

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

2. delete directed cycle of unmatched edges

until trivial SSC found, re-insert contracted edge pairs, switch.

Bimatrix games and signed matchings

 Lemke–Howson for bimatrix games can take exponential time [Savani / von Stengel 2004], like complementary pivoting on labeled polytopes [Morris 1994].

Bimatrix games and signed matchings

- Lemke–Howson for bimatrix games can take exponential time [Savani / von Stengel 2004], like complementary pivoting on labeled polytopes [Morris 1994].
- Proved using dual cyclic polytopes, defined by *n* inequalities in *d*-space with vertices characterized by Gale evenness:

Gale string = bitstring of length n with d bits 1 with **forbidden** odd runs of 1's such as 010, 01110, 0111110, ...

Examples: 111111000, 011011110, 111001101.

Bimatrix games and signed matchings

- Lemke–Howson for bimatrix games can take exponential time [Savani / von Stengel 2004], like complementary pivoting on labeled polytopes [Morris 1994].
- Proved using dual cyclic polytopes, defined by *n* inequalities in *d*-space with vertices characterized by Gale evenness:

Gale string = bitstring of length n with d bits 1 with **forbidden** odd runs of 1's such as 010, 01110, 011110, ...

Examples: 111111000, 011011110, 111001101.

• Gale string = vertex, bit 1 = facet (tight inequality).

Dual cyclic **d**-polytope with **n** facets has vertices encoded as Gale strings.

Dual cyclic **d**-polytope with **n** facets has vertices encoded as Gale strings. Take **n**-string of facet labels in $\{1, \ldots, d\}$, e.g.

123456 425

Dual cyclic **d**-polytope with **n** facets has vertices encoded as Gale strings. Take **n**-string of facet labels in $\{1, \ldots, d\}$, e.g.

123456 425	labels of Gale string
111111 000	123456 (completely labeled)
011011 110	223456 (not completely labeled)
111001 101	123456 (completely labeled)

Dual cyclic **d**-polytope with **n** facets has vertices encoded as Gale strings. Take **n**-string of facet labels in $\{1, \ldots, d\}$, e.g.

123456 425	labels of Gale string
111111 000	123456 (completely labeled)
011011 110	223456 (not completely labeled)
111001 101	123456 (completely labeled)

Theorem [Casetti / Merschen / von Stengel 2010] The completely labeled Gale strings are the **perfect matchings** of the graph with nodes 1,..., *d* and an Euler tour given by the label string. This preserves pivoting and signs.

Dual cyclic **d**-polytope with **n** facets has vertices encoded as Gale strings. Take **n**-string of facet labels in $\{1, \ldots, d\}$, e.g.

123456 425	labels of Gale string
111111 000	123456 (completely labeled)
011011 110	223456 (not completely labeled)
111001 101	123456 (completely labeled)

Theorem [Casetti / Merschen / von Stengel 2010] The completely labeled Gale strings are the **perfect matchings** of the graph with nodes 1,..., *d* and an Euler tour given by the label string. This preserves pivoting and signs.

Dual cyclic **d**-polytope with **n** facets has vertices encoded as Gale strings. Take **n**-string of facet labels in $\{1, \ldots, d\}$, e.g.

123456 425	labels of Gale string
111111 000	123456 (completely labeled)
011011 110	223456 (not completely labeled)
111001 101	123456 (completely labeled)

Theorem [Casetti / Merschen / von Stengel 2010] The completely labeled Gale strings are the **perfect matchings** of the graph with nodes 1,..., *d* and an Euler tour given by the label string. This preserves pivoting and signs.

Definition [Edmonds 2009] $(V, \mathcal{R}) d$ -oik (Euler complex)

⇔ **V** finite set of **nodes**, \mathcal{R} multiset of **rooms** \mathcal{R} with $|\mathcal{R}| = d$, any **wall** $W = \mathcal{R} - \{v\}$ for $v \in \mathcal{R} \in \mathcal{R}$ is contained in an **even** number of rooms

Definition [Edmonds 2009] $(V, \mathcal{R}) d$ -oik (Euler complex)

⇔ **V** finite set of **nodes**, \mathcal{R} multiset of **rooms** \mathcal{R} with $|\mathcal{R}| = d$, any **wall** $W = \mathcal{R} - \{v\}$ for $v \in \mathcal{R} \in \mathcal{R}$ is contained in an **even** number of rooms (in **two** rooms: \mathcal{R} called **manifold**).

Definition [Edmonds 2009] $(V, \mathcal{R}) d$ -oik (Euler complex)

⇔ **V** finite set of **nodes**, \mathcal{R} multiset of **rooms** \mathcal{R} with $|\mathcal{R}| = d$, any **wall** $W = \mathcal{R} - \{v\}$ for $v \in \mathcal{R} \in \mathcal{R}$ is contained in an **even** number of rooms (in **two** rooms: \mathcal{R} called **manifold**).

Example d = 2: Euler graph with nodes in V and edges in \mathcal{R} .

Definition [Edmonds 2009] $(V, \mathcal{R}) d$ -oik (Euler complex)

⇔ **V** finite set of **nodes**, \mathcal{R} multiset of **rooms** \mathcal{R} with $|\mathcal{R}| = d$, any **wall** $W = \mathcal{R} - \{v\}$ for $v \in \mathcal{R} \in \mathcal{R}$ is contained in an **even** number of rooms (in **two** rooms: \mathcal{R} called **manifold**).

Example d = 2: Euler graph with nodes in V and edges in \mathcal{R} .

manifold, d = 3

Definition [Edmonds 2009] $(V, \mathcal{R}) d$ -oik (Euler complex)

⇔ **V** finite set of **nodes**, \mathcal{R} multiset of **rooms** \mathcal{R} with $|\mathcal{R}| = d$, any **wall** $W = \mathcal{R} - \{v\}$ for $v \in \mathcal{R} \in \mathcal{R}$ is contained in an **even** number of rooms (in **two** rooms: \mathcal{R} called **manifold**).

Example d = 2: Euler graph with nodes in V and edges in \mathcal{R} .

d=2

Room partitions come in pairs

Given an oik \mathcal{R} with node set V, a **room partition** is a partition of V into rooms.

Theorem [Edmonds 2009]

The number of room partitions is even.

Room partition for 3-manifold

w-almost room partition

w-almost room partition

w-almost room partition

[Edmonds / Sanità 2010]: exponentially long path

[Edmonds / Sanità 2010]: exponentially long path

Path length more than doubles

Backward recursion

General construction: exponentially long path

 $W = R - \{v\}$ for $v \in R$ is called a wall of a room R

 $W = R - \{v\}$ for $v \in R$ is called a wall of a room R

A *d*-manifold is **orientable** if each room has a sign \oplus or \bigcirc so that any two rooms with a common wall *W* induce **opposite** orientation on *W* (\Leftrightarrow **pivoting changes sign**).

 $W = R - \{v\}$ for $v \in R$ is called a wall of a room R

A *d*-manifold is **orientable** if each room has a sign \oplus or \bigcirc so that any two rooms with a common wall *W* induce **opposite** orientation on *W* (\Leftrightarrow **pivoting changes sign**).

 $W = R - \{v\}$ for $v \in R$ is called a wall of a room R

A *d*-manifold is **orientable** if each room has a sign \oplus or \bigcirc so that any two rooms with a common wall *W* induce **opposite** orientation on *W* (\Leftrightarrow **pivoting changes sign**).

A *d*-oik is orientable if half of the rooms with a common wall W induce sign \oplus on W, the other half sign \bigcirc on W.

Example: orientable manifold

Example: orientable manifold

Room partition $A, a = \{1, 3, 5\}, \{2, 4, 6\}$

Room partition *A*, *a* : drop node 1

. drop node i

Room partition A, a, sign \oplus : drop node 1 leads to c, C, sign \ominus

T, $c, a \rightarrow c, C$ A, a

Room partition A, a, sign \oplus : drop node 3

Room partition A, a, sign \oplus : drop node **3** leads to B, b, sign \ominus

Room partition $\boldsymbol{c}, \boldsymbol{C}$, sign \bigcirc : drop node 5

Room partition $\boldsymbol{c}, \boldsymbol{C}$, sign \bigcirc : drop node 5

Room partition $\boldsymbol{c}, \boldsymbol{C}$, sign \bigcirc : drop node 5 leads to $\boldsymbol{b}, \boldsymbol{B}$, sign \oplus

Which sign for {**b**, **B**}?

Which sign for $\{\boldsymbol{b}, \boldsymbol{B}\}$? \bigoplus for $\boldsymbol{b}, \boldsymbol{B}, \bigcirc$ for $\boldsymbol{B}, \boldsymbol{b}$!

 \Rightarrow for odd dimension (here d = 3), order of rooms matters: permutations **263 154** (for **b**, **B**) and **154 263** (for **B**, **b**) have opposite parity.

Ordered room partitions

Theorem [Végh / von Stengel 2014]

Let \mathcal{R} be an oriented *d*-oik with node set V. Then the number of ordered room partitions $(R_1, \ldots, R_{|V|/d})$ is even.

Any two ordered room partitions connected by a pivoting path have opposite **sign**, and the respective unordered partitions are distinct.

Ordered room partitions

Theorem [Végh / von Stengel 2014]

Let \mathcal{R} be an oriented *d*-oik with node set V. Then the number of ordered room partitions $(R_1, \ldots, R_{|V|/d})$ is even.

Any two ordered room partitions connected by a pivoting path have opposite **sign**, and the respective unordered partitions are distinct.

If *d* is even, the order of rooms in a room partition is irrelevant.

Ordered room partitions

Theorem [Végh / von Stengel 2014]

Let \mathcal{R} be an oriented *d*-oik with node set V. Then the number of ordered room partitions $(R_1, \ldots, R_{|V|/d})$ is even.

Any two ordered room partitions connected by a pivoting path have opposite **sign**, and the respective unordered partitions are distinct.

If *d* is even, the order of rooms in a room partition is irrelevant.

Proof uses "pivoting systems" with **labels** = nodes.

Pivoting systems generalize labeled polytopes, Lemke's algorithm, Sperner's lemma, room partitions in oiks, and more.

• complementary pivoting paths on polytopes find equilibria in games

- complementary pivoting paths on polytopes find equilibria in games
- if pivoting is sign-switching (orientability)
 ⇒ endpoints of paths have opposite signs ⊕ ⊖

- complementary pivoting paths on polytopes find equilibria in games
- if pivoting is sign-switching (orientability)
 ⇒ endpoints of paths have opposite signs ⊕ ⊖
- opposite-signed matching in Euler graph found in linear time

- complementary pivoting paths on polytopes find equilibria in games
- if pivoting is sign-switching (orientability)
 ⇒ endpoints of paths have opposite signs ⊕ ⊖
- opposite-signed matching in Euler graph found in linear time
- exponentially long paths for matchings in Euler graph emulate exponentially long Lemke–Howson paths in **games**
- we can orient oiks and room partitions (in odd dimension: need ordered partition).

