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2-player game: find one Nash equilibrium

2-NASH ∈ PPAD (Polynomial Parity Argument with Direction)

Implicit digraph with indegrees and outdegrees ≤ 1 is a set of
[nodes], paths and cycles:

0

Parity argument: number of sources of paths = number of sinks

Comput. problem: given one source 0, find another source or sink

[Chen/Deng 2006] 2-NASH is PPAD-complete.
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Symmetric Nash equilibria of symmetric games

square game matrix A = payoffs to row player
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Symmetric Nash equilibria of symmetric games

equilibrium: only optimal strategies are played
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Symmetric Nash equilibria of symmetric games

plot polytope with strategy weights z1, z2, z3
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Symmetric Nash equilibria of symmetric games

with payoffs (scaled to 1) and labels for binding inequalities
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Symmetric Nash equilibria of symmetric games

equilibrium = completely labeled point
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Symmetric Nash equilibria of symmetric games

start path with artificial equilibrium z=0

, choose e.g.
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Symmetric Nash equilibria of symmetric games

start path with artificial equilibrium z=0, choose e.g.
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Symmetric Nash equilibria of symmetric games

leave facet with label 1, find duplicate label 3
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Symmetric Nash equilibria of symmetric games

leave facet with old label 3, find duplicate label 2
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Symmetric Nash equilibria of symmetric games

leave facet with old label 2, find duplicate label 3
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Symmetric Nash equilibria of symmetric games

leave facet with old label 3, find missing label 1
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Symmetric Nash equilibria of symmetric games

equilibria (including artificial equilibrium) = endpoints of paths
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The castle where each room has at most two doors
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The castle where each room has at most two doors
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The castle where each room has at most two doors
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Path of “almost completely labeled” edges

two completely labeled vertices
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Path of “almost completely labeled” edges

path because at most two neighbours (“doors” in castle)
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Path of “almost completely labeled” edges

orientation of edges: 2 on left, 3 on right
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Path of “almost completely labeled” edges

opposite orientation (“sign”) of endpoints
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Path of “almost completely labeled” edges

equilibrium sign − or + does not depend on path
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Labeled polytope P

Let aj ∈ R
m, βj ∈ R,

P = {x ∈ Rm | ajx ≤ βj , 1 ≤ j ≤ n },

let facet Fj = { x ∈ P | ajx = βj } have

label l(j) ∈ {1, . . . ,m}.

Assume P is a simple polytope (no x ∈ P on > m facets)

⇒ each vertex x on m facets = m linearly independent equations.

x completely labeled⇔ {l(j) | x ∈ Fj} = {1, . . . ,m}.
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Completely labeled points come in pairs

of opposite sign

Theorem [ Parity Argument ]

with Direction ]

Let P be a labeled polytope.

Then P has an even number of completely labeled vertices.

Half of these have sign − , half have sign + .

sign of completely labeled x is sign of determinant of facet
normal vectors in order of their labels: if (e.g.) facet aix = βi has
label i = 1, 2, ...,m, then

sign(x) = sign |a1 a2 · · · am|
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Pivoting changes signs

Lemma

Let x, y ∈ Rm be adjacent vertices of a simple polytope P

with facet normals c, a2, . . . , am for x and d, a2, . . . , am for y .

Then |c a2 · · · am| and |d a2 · · · am| have opposite sign.

x y
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Pivoting changes signs
Proof :

cx = β0

cy < β0

dx < β1

dy = β1

a2x = β2 a2y = β2
...

...
amx = βm amy = βm

Let (γ, δ, α2, . . . , αm) 6= (0, 0, 0, . . . , 0) with

γc + δd + α2a2 + · · ·+ αmam = 0

⇒ γ 6= 0, δ 6= 0,

(γc + δd)x = (γc + δd)y , γ(cx − cy) = δ(dy − dx)

⇒ γ and δ have same sign,

|(γc + δd) a2 · · · am| = γ |c a2 · · · am|+ δ |d a2 · · · am| = 0

⇒ |c a2 · · · am| and |d a2 · · · am| have opposite sign, QED.
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General Parity Argument with Direction

Facet normal vectors a1 a2 a3 c1 c2 c3, labels 1 2 3 1 2 3
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General Parity Argument with Direction

Start with a1 a2 a3, sign −
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General Parity Argument with Direction

Start with a1 a2 a3, sign − , label 1 missing, a1 → c3 gives sign +
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General Parity Argument with Direction

Switch columns c3 and a3 in determinant: back to sign −
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General Parity Argument with Direction

next pivot a3 → c2 gives sign +
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General Parity Argument with Direction

Switch columns c2 and a2 in determinant: back to sign −
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General Parity Argument with Direction

next pivot a2 → a3 gives sign +
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General Parity Argument with Direction

Last pivot c3 → c1 gives sign + , opposite to starting sign − .
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General Parity Argument with Direction

Only need: sign-switching of pivots and column exchanges
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A more abstract example

−

a1 a5a4a3a2
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+
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A more abstract example
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A more abstract example
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A more abstract example
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A more abstract example
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A more abstract example
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Nash equilibria of bimatrix games

Recall: m ×m matrix C,

P = {z ∈ R
m | −z ≤ 0, Cz ≤ 1 }

with 2m inequalities labeled 1, . . . ,m, 1, . . . ,m.
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Nash equilibria of bimatrix games

Recall: m ×m matrix C,

P = {z ∈ R
m | −z ≤ 0, Cz ≤ 1 }

with 2m inequalities labeled 1, . . . ,m, 1, . . . ,m.

Completely labeled z 6= 0 ⇔

Nash equilibrium (z, z) of game (C,C>)

Normalize sign of “artificial equilibrium” 0 to − , in general

index(z) = sign(z) · (−1)m+1
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Nash equilibria of bimatrix games

Recall: m ×m matrix C,

P = {z ∈ R
m | −z ≤ 0, Cz ≤ 1 }

with 2m inequalities labeled 1, . . . ,m, 1, . . . ,m.

bimatrix game (A,B):

C =

(
0 A

B> 0

)
, z = (x, y) :

Completely labeled (x, y) 6= (0, 0) ⇔

Nash equilibrium (x, y) of game (A,B)
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Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (A,B) has an odd number of
equilibria, one more of index + than of index − .

[Proof: Endpoints of pivoting paths have opposite index − and + .]

Equilibria of index + include every

• pure-strategy equilibrium

• unique equilibrium

• dynamically stable equilibrium [Hofbauer 2003]
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Dynamically stable equilibrium: only if index +
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Dynamically stable equilibrium: only if index +
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Strategic characterization of the index

Theorem [von Schemde / von Stengel 2004]

An equilibrium of a nondegenerate bimatrix game has index +

⇔ it is the unique equilibrium in a larger game that has suitable
additional strategies for one player.

Theorem [Balthasar / von Stengel 2009]

A symmetric equilibrium of a nondegenerate symmetric bimatrix
game has symmetric index +

⇔ it is the unique equilibrium in a larger symmetric game that
has suitable additional strategies for both players.
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Signed perfect matchings
• Graph G = (V ,E), V = {1, . . . , n}

• orient each edge ab ∈ E as (a, b) or (b, a)

• perfect matching M ⊂ E of G

• for the edges ab of M (in any sequence), write down endpoints
a, b in the order of the orientation of the edge. Define

sign(M) = parity of the resulting permutation of 1, . . . , n .
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Euler graphs

... have tours

Euler graph

• every node has even degree (= number of neighbours)

• has Eulerian orientation (indegree = outdegree) ... and tour
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Signs of matchings in Euler graphs

Theorem

A graph with an Eulerian orientation has as many perfect
matchings of sign + as of sign − .

Proof :

Any two perfect matchings are connected by a pivoting path
which connects matchings of opposite sign.
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Finding a second perfect matching in an Euler graph
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Finding a second perfect matching in an Euler graph
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A computational problem

Input: Graph G = (V ,E) with Eulerian orientation and perfect
matching of sign + .

Output: A perfect matching with sign − .

The pivoting algorithm finds this

• in linear time for bipartite graphs

• but may take exponential time in general [Morris 1994]

Note: A second matching can be found in polynomial time
[Edmonds 1965], but not with sign − .

Related difficult problem: Pfaffian orientations of graphs.
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Finding a second matching of opposite sign

Theorem [Végh / von Stengel 2014]

Given a graph G = (V ,E) with an Eulerian orientation and a
perfect matching of sign + , a matching of sign − can be found in
time near-linear ∗ in |E|.

Suffices to find sign-switching cycle.

∗ up to factor given by inverse Ackermann function α .

21



Finding a second matching of opposite sign

Theorem [Végh / von Stengel 2014]

Given a graph G = (V ,E) with an Eulerian orientation and a
perfect matching of sign + , a matching of sign − can be found in
time near-linear ∗ in |E|.

Suffices to find sign-switching cycle.

∗ up to factor given by inverse Ackermann function α .

21



Finding a second matching of opposite sign

Theorem [Végh / von Stengel 2014]

Given a graph G = (V ,E) with an Eulerian orientation and a
perfect matching of sign + , a matching of sign − can be found in
time near-linear ∗ in |E|.

Suffices to find sign-switching cycle.

∗ up to factor given by inverse Ackermann function α .

21



Sign-switching cycle (SSC)

Given an oriented graph and a perfect matching M , a
sign-switching cycle is a cycle C with every other edge
in M and an even number of forward-pointing edges.

⇒ M4C is a matching of opposite sign to M .

−

+

2 3 6 4 5 1

654321

1

2

3

4

5

6

22



Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree = outdegree = 1 with its two edges

2. delete directed cycle of unmatched edges
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Bimatrix games and signed matchings

• Lemke–Howson for bimatrix games can take exponential time
[Savani / von Stengel 2004], like complementary pivoting on
labeled polytopes [Morris 1994].

• Proved using dual cyclic polytopes, defined by n inequalities
in d-space with vertices characterized by Gale evenness:

Gale string = bitstring of length n with d bits 1 with forbidden
odd runs of 1’s such as 010, 01110, 0111110, . . .

Examples: 111111000, 011011110, 111001101.

• Gale string = vertex, bit 1 = facet (tight inequality).
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Labeled Gale strings

Dual cyclic d-polytope with n facets has vertices encoded as Gale
strings.

Take n-string of facet labels in {1, . . . , d}, e.g.

123456 425 labels of Gale string
111111 000 123456 (completely labeled)
011011 110 223456 (not completely labeled)
111001 101 123456 (completely labeled)

Theorem [Casetti / Merschen /
von Stengel 2010]
The completely labeled Gale strings
are the perfect matchings of the
graph with nodes 1, . . . , d and an
Euler tour given by the label string.
This preserves pivoting and signs.
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Oiks and pivoting

Definition [Edmonds 2009] (V ,R) d-oik (Euler complex)

⇔ V finite set of nodes, R multiset of rooms R with |R| = d ,

any wall W = R − {v} for v ∈ R ∈ R is contained in an
even number of rooms

(in two rooms: R called manifold).

Example d = 2: Euler graph with nodes in V and edges inR.

manifold, d = 3

pivoting

d = 2

26



Oiks and pivoting

Definition [Edmonds 2009] (V ,R) d-oik (Euler complex)

⇔ V finite set of nodes, R multiset of rooms R with |R| = d ,

any wall W = R − {v} for v ∈ R ∈ R is contained in an
even number of rooms (in two rooms: R called manifold).

Example d = 2: Euler graph with nodes in V and edges inR.

manifold, d = 3

pivoting

d = 2

26



Oiks and pivoting

Definition [Edmonds 2009] (V ,R) d-oik (Euler complex)

⇔ V finite set of nodes, R multiset of rooms R with |R| = d ,

any wall W = R − {v} for v ∈ R ∈ R is contained in an
even number of rooms (in two rooms: R called manifold).

Example d = 2: Euler graph with nodes in V and edges inR.

manifold, d = 3

pivoting

d = 2

26



Oiks and pivoting

Definition [Edmonds 2009] (V ,R) d-oik (Euler complex)

⇔ V finite set of nodes, R multiset of rooms R with |R| = d ,

any wall W = R − {v} for v ∈ R ∈ R is contained in an
even number of rooms (in two rooms: R called manifold).

Example d = 2: Euler graph with nodes in V and edges inR.

manifold, d = 3

pivoting

d = 2

26



Oiks and pivoting

Definition [Edmonds 2009] (V ,R) d-oik (Euler complex)

⇔ V finite set of nodes, R multiset of rooms R with |R| = d ,

any wall W = R − {v} for v ∈ R ∈ R is contained in an
even number of rooms (in two rooms: R called manifold).

Example d = 2: Euler graph with nodes in V and edges inR.

manifold, d = 3 pivoting d = 2

26



Room partitions come in pairs

Given an oikR with node set V ,
a room partition is a partition of V into rooms.

Theorem [Edmonds 2009]

The number of room partitions is even.
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Room partition for 3-manifold
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Found second room partition
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[Edmonds / Sanità 2010]: exponentially long path
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6 extra nodes, 12 extra rooms
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Path length more than doubles
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Backward recursion
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Final steps
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General construction: exponentially long path
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Orienting oiks
W = R − {v} for v ∈ R is called a wall of a room R

A d-manifold is orientable if each room has a sign + or − so that
any two rooms with a common wall W induce opposite orientation
on W (⇔ pivoting changes sign).

W

A d-oik is orientable if half of the rooms with a common wall W
induce sign + on W , the other half sign − on W .
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How to orient room partitions?

Example: orientable manifold
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How to orient room partitions?

Room partition A, a = {1, 3, 5}, {2, 4, 6}
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How to orient room partitions?

Room partition A, a

, sign +

: drop node 1
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How to orient room partitions?

Room partition A, a, sign + : drop node 1 leads to c,C, sign −
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How to orient room partitions?

Room partition A, a, sign + : drop node 3
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How to orient room partitions?

Room partition c,C, sign − : drop node 5
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How to orient room partitions?

Room partition c,C, sign − : drop node 5 leads to b,B, sign +
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How to orient room partitions?

Which sign for {b,B}?
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How to orient room partitions?

Which sign for {b,B}? + for b,B, − for B, b !
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How to orient room partitions?
⇒ for odd dimension (here d = 3), order of rooms matters:
permutations 263 154 (for b,B) and 154 263 (for B, b) have
opposite parity.
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Ordered room partitions

Theorem [Végh / von Stengel 2014]

LetR be an oriented d-oik with node set V . Then the number of
ordered room partitions (R1, . . . ,R|V |/d) is even.

Any two ordered room partitions connected by a pivoting path have
opposite sign, and the respective unordered partitions are distinct.

If d is even, the order of rooms in a room partition is irrelevant.

Proof uses “pivoting systems” with labels = nodes.

Pivoting systems generalize labeled polytopes, Lemke’s algorithm,
Sperner’s lemma, room partitions in oiks, and more.
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Proof uses “pivoting systems” with labels = nodes.

Pivoting systems generalize labeled polytopes, Lemke’s algorithm,
Sperner’s lemma, room partitions in oiks, and more.
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Summary of results

• complementary pivoting paths on polytopes find
equilibria in games

• if pivoting is sign-switching (orientability)
⇒ endpoints of paths have opposite signs + −

• opposite-signed matching in Euler graph found in linear time

• exponentially long paths for matchings in Euler graph emulate
exponentially long Lemke–Howson paths in games

• we can orient oiks and room partitions (in odd dimension: need
ordered partition).
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Thank you!
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