Pathways to Equilibria, Pretty Pictures and Diagrams (PPAD)

Bernhard von Stengel

partly joint work with:
Marta Casetti, Julian Merschen, Lászlo Végh

Department of Mathematics
London School of Economics

2-player game: find one Nash equilibrium

2-NASH \in PPAD (Polynomial Parity Argument with Direction) Implicit digraph with indegrees and outdegrees $\leq \mathbf{1}$ is a set of [nodes], paths and cycles:

Parity argument: number of sources of paths = number of sinks
Comput. problem: given one source $\mathbf{0}$, find another source or sink [Chen/Deng 2006] 2-NASH is PPAD-complete.

Symmetric Nash equilibria of symmetric games

 square game matrix $A=$ payoffs to row player$$
A=\begin{array}{lll}
0 & 3 & 0 \\
2 & 2 & 2 \\
3 & 0 & 0
\end{array}
$$

Symmetric Nash equilibria of symmetric games

 equilibrium: only optimal strategies are played$$
A=\begin{array}{|lll|l}
1 / 3 & 2 / 3 & 0 \\
0 & 3 & 0 & 2 \\
2 & 2 & 2 & 2 \\
3 & 0 & 0 & 1
\end{array}
$$

Symmetric Nash equilibria of symmetric games

plot polytope with strategy weights $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$

Symmetric Nash equilibria of symmetric games

 with payoffs (scaled to 1) and labels for binding inequalities

Symmetric Nash equilibria of symmetric games

equilibrium = completely labeled point

Symmetric Nash equilibria of symmetric games

 start path with artificial equilibrium $z=0$

Symmetric Nash equilibria of symmetric games

 start path with artificial equilibrium $z=0$, choose e.g.

Symmetric Nash equilibria of symmetric games

leave facet with label 1, find duplicate label 3

Symmetric Nash equilibria of symmetric games

leave facet with old label 3, find duplicate label 2

Symmetric Nash equilibria of symmetric games

leave facet with old label $\mathbf{2}$, find duplicate label 3

Symmetric Nash equilibria of symmetric games

leave facet with old label 3, find missing label 1

Symmetric Nash equilibria of symmetric games

 equilibria (including artificial equilibrium) = endpoints of paths

The castle where each room has at most two doors

The castle where each room has at most two doors

The castle where each room has at most two doors

The castle where each room has at most two doors

Path of "almost completely labeled" edges

two completely labeled vertices

Path of "almost completely labeled" edges

path because at most two neighbours ("doors" in castle)

Path of "almost completely labeled" edges

 orientation of edges: $\mathbf{2}$ on left, $\mathbf{3}$ on right

Path of "almost completely labeled" edges

 opposite orientation ("sign") of endpoints

Path of "almost completely labeled" edges

 equilibrium sign Θ or \oplus does not depend on path

Path of "almost completely labeled" edges

 equilibrium sign Θ or \oplus does not depend on path

Path of "almost completely labeled" edges

 equilibrium sign Θ or \oplus does not depend on path

Path of "almost completely labeled" edges

equilibrium sign Θ or \oplus does not depend on path

Path of "almost completely labeled" edges

 equilibrium sign Θ or \oplus does not depend on path

Labeled polytope P

Let $\boldsymbol{a}_{\boldsymbol{j}} \in \mathbb{R}^{\boldsymbol{m}}, \boldsymbol{\beta}_{\boldsymbol{j}} \in \mathbb{R}$,

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{m}} \mid \boldsymbol{a}_{\boldsymbol{j}} \boldsymbol{x} \leq \boldsymbol{\beta}_{\boldsymbol{j}}, \quad \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}\right\}
$$

let facet
label
$\boldsymbol{F}_{j}=\left\{\boldsymbol{x} \in \boldsymbol{P} \mid \boldsymbol{a}_{j} \boldsymbol{x}=\boldsymbol{\beta}_{j}\right\}$ have $I(j) \in\{1, \ldots, m\}$.

Assume \boldsymbol{P} is a simple polytope (no $\boldsymbol{x} \in \boldsymbol{P}$ on $>\boldsymbol{m}$ facets)
\Rightarrow each vertex \boldsymbol{x} on \boldsymbol{m} facets $=\boldsymbol{m}$ linearly independent equations.
x completely labeled $\Leftrightarrow\left\{I(j) \mid x \in F_{j}\right\}=\{1, \ldots, m\}$.

Completely labeled points come in pairs

Theorem [Parity Argument]
Let \boldsymbol{P} be a labeled polytope.
Then \boldsymbol{P} has an even number of completely labeled vertices.

Completely labeled points come in pairs of opposite sign

Theorem [Parity Argument with Direction]
Let \boldsymbol{P} be a labeled polytope.
Then \boldsymbol{P} has an even number of completely labeled vertices. Half of these have sign Θ, half have sign \oplus.

Completely labeled points come in pairs of opposite sign

Theorem [Parity Argument with Direction]
Let \boldsymbol{P} be a labeled polytope.
Then \boldsymbol{P} has an even number of completely labeled vertices. Half of these have sign Θ, half have sign \oplus.
sign of completely labeled \boldsymbol{x} is sign of determinant of facet normal vectors in order of their labels: if (e.g.) facet $\boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{x}=\boldsymbol{\beta}_{\boldsymbol{i}}$ has label $\boldsymbol{i}=\mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{m}$, then

$$
\operatorname{sign}(x)=\operatorname{sign}\left|a_{1} a_{2} \cdots a_{m}\right|
$$

Pivoting changes signs

Lemma

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{\boldsymbol{m}}$ be adjacent vertices of a simple polytope \boldsymbol{P}

Pivoting changes signs

Lemma

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{\boldsymbol{m}}$ be adjacent vertices of a simple polytope \boldsymbol{P} with facet normals $\boldsymbol{c}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{m}}$ for \boldsymbol{x} and $\boldsymbol{d}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{m}}$ for \boldsymbol{y}.

Pivoting changes signs

Lemma

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{\boldsymbol{m}}$ be adjacent vertices of a simple polytope \boldsymbol{P} with facet normals c, a_{2}, \ldots, a_{m} for x and d, a_{2}, \ldots, a_{m} for \boldsymbol{y}.
Then $\left|\boldsymbol{c} \mathbf{a}_{\mathbf{2}} \cdots \boldsymbol{a}_{\boldsymbol{m}}\right|$ and $\left|\boldsymbol{d} \boldsymbol{a}_{\mathbf{2}} \cdots \boldsymbol{a}_{\boldsymbol{m}}\right|$ have opposite sign.

Pivoting changes signs

Proof:

$$
\begin{array}{cc}
c x=\beta_{0} & \\
& d y=\beta_{1} \\
a_{2} x=\beta_{2} & a_{2} y=\beta_{2} \\
\vdots & \vdots \\
a_{m} x=\beta_{m} & a_{m} y=\beta_{m}
\end{array}
$$

Pivoting changes signs

Proof:

$$
c x=\beta_{0}
$$

$d y=\beta_{1}$
$a_{2} x=\beta_{2} \quad a_{2} y=\beta_{2}$

$$
a_{m} X=\beta_{m} \quad a_{m} y=\beta_{m}
$$

Let $\left(\gamma, \delta, \alpha_{2}, \ldots, \alpha_{m}\right) \neq(0,0,0, \ldots, 0)$ with

$$
\gamma c+\delta d+\alpha_{2} a_{2}+\cdots+\alpha_{m} a_{m}=0
$$

Pivoting changes signs

Proof:

$$
c x=\beta_{0}
$$

$d y=\beta_{1}$
$a_{2} x=\beta_{2} \quad a_{2} y=\beta_{2}$

$$
a_{m} X=\beta_{m} \quad a_{m} y=\beta_{m}
$$

Let $\left(\gamma, \delta, \alpha_{2}, \ldots, \alpha_{m}\right) \neq(0,0,0, \ldots, 0)$ with

$$
\gamma c+\delta \boldsymbol{d}+\alpha_{2} a_{2}+\cdots+\alpha_{m} a_{m}=0
$$

$\Rightarrow \gamma \neq 0, \delta \neq 0$,
$(\gamma c+\delta d) x=(\gamma c+\delta d) y$

Pivoting changes signs

Proof:

$$
\begin{array}{cc}
c x=\beta_{0} & c y<\beta_{0} \\
\hline d x<\beta_{1} & d y=\beta_{1} \\
\hline a_{2} x=\beta_{2} & a_{2} y=\beta_{2} \\
\vdots & \vdots \\
a_{m} x=\beta_{m} & a_{m} y=\beta_{m}
\end{array}
$$

Let $\left(\gamma, \delta, \alpha_{2}, \ldots, \alpha_{m}\right) \neq(0,0,0, \ldots, 0)$ with

$$
\gamma c+\delta d+\alpha_{2} a_{2}+\cdots+\alpha_{m} a_{m}=0
$$

$\Rightarrow \gamma \neq 0, \delta \neq 0$,
$(\gamma c+\delta d) x=(\gamma c+\delta d) y, \quad \gamma(c x-c y)=\delta(d y-d x)$

Pivoting changes signs

Proof:

$$
\begin{array}{cc}
c x=\beta_{0} & c y<\beta_{0} \\
\hline d x<\beta_{1} & d y=\beta_{1} \\
\hline a_{2} x=\beta_{2} & a_{2} y=\beta_{2} \\
\vdots & \vdots \\
a_{m} x=\beta_{m} & a_{m} y=\beta_{m}
\end{array}
$$

Let $\left(\gamma, \delta, \alpha_{2}, \ldots, \alpha_{m}\right) \neq(0,0,0, \ldots, 0)$ with

$$
\gamma c+\delta d+\alpha_{2} a_{2}+\cdots+\alpha_{m} a_{m}=0
$$

$\Rightarrow \gamma \neq 0, \delta \neq 0$,
$(\gamma c+\delta d) x=(\gamma c+\delta d) y, \quad \gamma(c x-c y)=\delta(d y-d x)$
$\Rightarrow \gamma$ and δ have same sign

Pivoting changes signs

Proof:

$$
\begin{array}{cc}
c x=\beta_{0} & c y<\beta_{0} \\
\hline d x<\beta_{1} & d y=\beta_{1} \\
\hline a_{2} x=\beta_{2} & a_{2} y=\beta_{2} \\
\vdots & \vdots \\
a_{m} x=\beta_{m} & a_{m} y=\beta_{m}
\end{array}
$$

Let $\left(\gamma, \delta, \alpha_{2}, \ldots, \alpha_{m}\right) \neq(0,0,0, \ldots, 0)$ with

$$
\gamma c+\delta d+\alpha_{2} a_{2}+\cdots+\alpha_{m} a_{m}=0
$$

$\Rightarrow \gamma \neq 0, \delta \neq 0$,
$(\gamma c+\delta d) x=(\gamma c+\delta d) y, \quad \gamma(c x-c y)=\delta(d y-d x)$
$\Rightarrow \gamma$ and δ have same sign,

$$
\left|(\gamma c+\delta d) a_{2} \cdots a_{m}\right|=\gamma\left|c a_{2} \cdots a_{m}\right|+\delta\left|d a_{2} \cdots a_{m}\right|=0
$$

Pivoting changes signs

Proof:

$$
\begin{array}{cc}
c x=\beta_{0} & c y<\beta_{0} \\
\hline d x<\beta_{1} & d y=\beta_{1} \\
\hline a_{2} x=\beta_{2} & a_{2} y=\beta_{2} \\
\vdots & \vdots \\
a_{m} x=\beta_{m} & a_{m} y=\beta_{m}
\end{array}
$$

Let $\left(\gamma, \delta, \alpha_{2}, \ldots, \alpha_{m}\right) \neq(0,0,0, \ldots, 0)$ with

$$
\gamma c+\delta d+\alpha_{2} a_{2}+\cdots+\alpha_{m} a_{m}=0
$$

$\Rightarrow \gamma \neq 0, \delta \neq 0$,
$(\gamma c+\delta d) x=(\gamma c+\delta d) y, \quad \gamma(c x-c y)=\delta(d y-d x)$
$\Rightarrow \gamma$ and δ have same sign,

$$
\left|(\gamma c+\delta d) a_{2} \cdots a_{m}\right|=\gamma\left|c a_{2} \cdots a_{m}\right|+\delta\left|d a_{2} \cdots a_{m}\right|=0
$$

$\Rightarrow\left|c a_{2} \cdots a_{m}\right|$ and $\left|d a_{2} \cdots a_{m}\right|$ have opposite sign, QED.

General Parity Argument with Direction

Facet normal vectors $a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}$, labels 123123

General Parity Argument with Direction

Start with $\mathbf{a}_{\mathbf{1}} \mathbf{a}_{\mathbf{2}} \mathbf{a}_{\mathbf{3}}$, sign Θ

$$
\begin{gathered}
\ominus \\
\left|a_{1} a_{2} a_{3}\right|
\end{gathered}
$$

General Parity Argument with Direction

Start with $a_{1} a_{\mathbf{2}} \mathbf{a}_{\mathbf{3}}$, sign Θ, label 1 missing, $a_{1} \rightarrow \boldsymbol{c}_{3}$ gives sign \oplus

$$
\begin{gathered}
\ominus \\
\left|a_{1} a_{2} a_{3}\right| \longrightarrow\left|a_{3} \quad a_{2} a_{3}\right|
\end{gathered}
$$

General Parity Argument with Direction

Switch columns c_{3} and a_{3} in determinant: back to sign Θ

General Parity Argument with Direction

next pivot $a_{3} \rightarrow c_{2}$ gives sign \oplus

General Parity Argument with Direction

Switch columns c_{2} and a_{2} in determinant: back to sign Θ

General Parity Argument with Direction

next pivot $a_{2} \rightarrow a_{3}$ gives sign \oplus

$$
\begin{aligned}
& \Theta \\
& \oplus \\
& \left|a_{1} a_{2} a_{3}\right| \longrightarrow\left|c_{3} a_{2} a_{3}\right| \\
& \left|a_{3} a_{2} c_{3}\right| \xrightarrow{\rightarrow}\left|c_{2} a_{2} c_{3}\right| \\
& \left|a_{2} c_{2} c_{3}\right| \longrightarrow\left|a_{3} c_{2} c_{3}\right|
\end{aligned}
$$

General Parity Argument with Direction

Switch columns a_{3} and c_{3} in determinant: back to sign Θ

General Parity Argument with Direction

Last pivot $c_{3} \rightarrow c_{1}$ gives sign \oplus, opposite to starting sign Θ.

General Parity Argument with Direction

Only need: sign-switching of pivots and column exchanges

$$
\begin{gathered}
\ominus \\
\left.\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \mid
\end{array} \xrightarrow{\longrightarrow}\right| \begin{array}{ll}
c_{3} & a_{2} \\
a_{3}
\end{array} \right\rvert\, \\
\left.\left|\begin{array}{lll}
a_{3} & a_{2} & c_{3} \mid
\end{array} \xrightarrow{\longrightarrow}\right| \begin{array}{lll}
c_{2} & a_{2} & c_{3}
\end{array} \right\rvert\, \\
\left|\begin{array}{lll}
a_{2} & c_{2} & c_{3} \mid
\end{array} \xrightarrow{\longrightarrow}\right| \begin{array}{lll}
a_{3} & c_{2} & c_{3} \mid
\end{array} \\
\left\lvert\, \begin{array}{lll}
c_{3} & c_{2} & a_{3} \mid \\
& c_{2} & a_{3} \mid
\end{array}\right.
\end{gathered}
$$

A more abstract example

\bigcirc
$\left|a_{1} a_{2} a_{3} a_{4} a_{5}\right|$

A more abstract example

A more abstract example

$\ominus \quad \oplus$

$\left|a_{1} a_{2} a_{3} a_{4} a_{5}\right| \longrightarrow\left|c_{3} a_{2} \underline{a}_{3} a_{4} a_{5}\right|$
$\mid a_{3} a_{2} c_{3} a_{4} a_{5}$ |

A more abstract example

$\ominus \quad \oplus$

$\left|a_{1} a_{2} a_{3} a_{4} a_{5}\right| \longrightarrow\left|c_{3} a_{2} \underline{a}_{3} a_{4} a_{5}\right|$
$\left|a_{3} a_{2} c_{3} a_{4} a_{5}\right| \longrightarrow\left|c_{4} a_{2} c_{3} a_{4} a_{5}\right|$

A more abstract example

$\ominus \quad \oplus$

$\left|a_{1} a_{2} a_{3} a_{4} a_{5}\right| \longrightarrow\left|c_{3} a_{2} \underline{a}_{3} a_{4} a_{5}\right|$
$\left|a_{3} a_{2} c_{3} a_{4} a_{5}\right| \longrightarrow\left|c_{4} a_{2} c_{3} a_{4} a_{5}\right|$
$\left|a_{4} a_{2} c_{3} c_{4} a_{5}\right|$

A more abstract example

$\bigcirc \quad \dagger$

$\left|a_{1} a_{2} a_{3} a_{4} a_{5}\right| \longrightarrow\left|c_{3} a_{2} \underline{a}_{3} a_{4} a_{5}\right|$
$\left|a_{3} a_{2} c_{3} a_{4} a_{5}\right| \longrightarrow\left|a_{4} a_{2} c_{3} a_{4} a_{5}\right|$
$\left|a_{4} a_{2} c_{3} c_{4} a_{5}\right| \longrightarrow\left|c_{5} a_{2} c_{3} c_{4} a_{5}\right|$

A more abstract example

Θ
 \oplus

$\left|a_{1} a_{2} a_{3} a_{4} a_{5}\right| \longrightarrow\left|c_{3} a_{2} a_{3} a_{4} a_{5}\right|$
$\left|a_{3} a_{2} c_{3} a_{4} a_{5}\right| \longrightarrow\left|c_{4} a_{2} c_{3} a_{4} a_{5}\right|$
$\left|a_{4} a_{2} c_{3} c_{4} a_{5}\right| \longrightarrow \mid c_{5} a_{2} c_{3} c_{4} a_{5}$
$\begin{array}{llll}a_{5} & a_{2} & c_{3} & c_{4} \\ c_{5}\end{array}$

A more abstract example

Θ
 \oplus

$\left|a_{1} a_{2} a_{3} a_{4} a_{5}\right| \longrightarrow\left|c_{3} a_{2} a_{3} a_{4} a_{5}\right|$
$\left|a_{3} a_{2} c_{3} a_{4} a_{5}\right| \longrightarrow\left|c_{4} a_{2} c_{3} a_{4} a_{5}\right|$
$\left|a_{4} a_{2} c_{3} c_{4} a_{5}\right| \longrightarrow \mid c_{5} a_{2} c_{3} c_{4} a_{5}$
$a_{5} a_{2} c_{3} c_{4} c_{5}|\longrightarrow| c_{1} a_{2} c_{3} c_{4} c_{5} \mid$

Nash equilibria of bimatrix games

Recall: $\boldsymbol{m} \times \boldsymbol{m}$ matrix \boldsymbol{C},

$$
P=\left\{z \in \mathbb{R}^{m} \mid-z \leq 0, C z \leq 1\right\}
$$

with $\mathbf{2 m}$ inequalities labeled $1, \ldots, m, 1, \ldots, m$.

Nash equilibria of bimatrix games

Recall: $\boldsymbol{m} \times \boldsymbol{m}$ matrix \boldsymbol{C},

$$
P=\left\{z \in \mathbb{R}^{m} \mid-z \leq 0, \quad C z \leq 1\right\}
$$

with $\mathbf{2 m}$ inequalities labeled $1, \ldots, m, 1, \ldots, m$.

Completely labeled $\boldsymbol{z} \neq \mathbf{0} \Leftrightarrow$
Nash equilibrium $(\boldsymbol{z}, \boldsymbol{z})$ of game $\left(\boldsymbol{C}, \boldsymbol{C}^{\top}\right)$

Nash equilibria of bimatrix games

Recall: $\boldsymbol{m} \times \boldsymbol{m}$ matrix \boldsymbol{C},

$$
P=\left\{z \in \mathbb{R}^{m} \mid-z \leq 0, \quad C z \leq 1\right\}
$$

with $2 m$ inequalities labeled $1, \ldots, m, 1, \ldots, m$.

Completely labeled $\boldsymbol{z} \neq \mathbf{0} \Leftrightarrow$
Nash equilibrium $(\boldsymbol{z}, \boldsymbol{z})$ of game $\left(\boldsymbol{C}, \boldsymbol{C}^{\top}\right)$

Normalize sign of "artificial equilibrium" $\mathbf{0}$ to Θ, in general

$$
\operatorname{index}(z)=\operatorname{sign}(z) \cdot(-1)^{m+1}
$$

Nash equilibria of bimatrix games

Recall: $\boldsymbol{m} \times \boldsymbol{m}$ matrix \boldsymbol{C},

$$
P=\left\{z \in \mathbb{R}^{m} \mid-z \leq \mathbf{0}, \quad C z \leq \mathbf{1}\right\}
$$

with $\mathbf{2 m}$ inequalities labeled $\mathbf{1}, \ldots, m, 1, \ldots, m$.
bimatrix game (A, B) :
$C=\left(\begin{array}{cc}0 & A \\ B^{\top} & 0\end{array}\right), \quad z=(x, y):$
Completely labeled $(x, y) \neq(\mathbf{0}, \mathbf{0}) \Leftrightarrow$
Nash equilibrium $(\boldsymbol{x}, \boldsymbol{y})$ of game $(\boldsymbol{A}, \boldsymbol{B})$

Index of an equilibrium

Theorem [Shapley 1974]
A nondegenerate bimatrix game $(\boldsymbol{A}, \boldsymbol{B})$ has an odd number of equilibria, one more of index \oplus than of index Θ.

Index of an equilibrium

Theorem [Shapley 1974]
A nondegenerate bimatrix game $(\boldsymbol{A}, \boldsymbol{B})$ has an odd number of equilibria, one more of index \oplus than of index Θ.
[Proof: Endpoints of pivoting paths have opposite index Θ and \oplus.]

Index of an equilibrium

Theorem [Shapley 1974]
A nondegenerate bimatrix game $(\boldsymbol{A}, \boldsymbol{B})$ has an odd number of equilibria, one more of index \oplus than of index Θ.
[Proof: Endpoints of pivoting paths have opposite index Θ and \oplus.]

Equilibria of index \oplus include every

- pure-strategy equilibrium
- unique equilibrium
- dynamically stable equilibrium [Hofbauer 2003]

Dynamically stable equilibrium: only if index \oplus

Strategic characterization of the index

Theorem [von Schemde / von Stengel 2004]
An equilibrium of a nondegenerate bimatrix game has index \oplus
\Leftrightarrow it is the unique equilibrium in a larger game that has suitable additional strategies for one player.

Strategic characterization of the index

Theorem [von Schemde / von Stengel 2004]
An equilibrium of a nondegenerate bimatrix game has index \oplus
\Leftrightarrow it is the unique equilibrium in a larger game that has suitable additional strategies for one player.

Theorem [Balthasar / von Stengel 2009]
A symmetric equilibrium of a nondegenerate symmetric bimatrix game has symmetric index \oplus
\Leftrightarrow it is the unique equilibrium in a larger symmetric game that has suitable additional strategies for both players.

Signed perfect matchings

- $\operatorname{Graph} \boldsymbol{G}=(V, E), \quad V=\{1, \ldots, n\}$
- orient each edge $\boldsymbol{a b} \in E$ as $(\boldsymbol{a}, \boldsymbol{b})$ or $(\boldsymbol{b}, \boldsymbol{a})$
- perfect matching $M \subset E$ of G
- for the edges $\boldsymbol{a b}$ of \boldsymbol{M} (in any sequence), write down endpoints a, b in the order of the orientation of the edge. Define $\boldsymbol{\operatorname { s i g n }}(M)=$ parity of the resulting permutation of $1, \ldots, n$.

Signed perfect matchings

- $\operatorname{Graph} \boldsymbol{G}=(V, E), \quad V=\{1, \ldots, n\}$
- orient each edge $\boldsymbol{a b} \in E$ as $(\boldsymbol{a}, \boldsymbol{b})$ or $(\boldsymbol{b}, \boldsymbol{a})$
- perfect matching $M \subset E$ of G
- for the edges $\boldsymbol{a b}$ of \boldsymbol{M} (in any sequence), write down endpoints a, b in the order of the orientation of the edge. Define $\boldsymbol{\operatorname { s i g n }}(M)=$ parity of the resulting permutation of $1, \ldots, n$.

Signed perfect matchings

- $\operatorname{Graph} \boldsymbol{G}=(V, E), \quad V=\{1, \ldots, n\}$
- orient each edge $\boldsymbol{a b} \in E$ as $(\boldsymbol{a}, \boldsymbol{b})$ or $(\boldsymbol{b}, \boldsymbol{a})$
- perfect matching $M \subset E$ of G
- for the edges $\boldsymbol{a b}$ of \boldsymbol{M} (in any sequence), write down endpoints a, b in the order of the orientation of the edge. Define $\operatorname{sign}(M)=$ parity of the resulting permutation of $1, \ldots, n$.

Signed perfect matchings

- Graph $\boldsymbol{G}=(V, E), \quad V=\{1, \ldots, n\}$
- orient each edge $\boldsymbol{a b} \in E$ as $(\boldsymbol{a}, \boldsymbol{b})$ or $(\boldsymbol{b}, \boldsymbol{a})$
- perfect matching $M \subset E$ of G
- for the edges $\boldsymbol{a b}$ of \boldsymbol{M} (in any sequence), write down endpoints a, b in the order of the orientation of the edge. Define $\boldsymbol{\operatorname { s i g n }}(M)=$ parity of the resulting permutation of $1, \ldots, n$.

Signed perfect matchings

- Graph $\boldsymbol{G}=(V, E), \quad V=\{1, \ldots, n\}$
- orient each edge $\boldsymbol{a b} \in E$ as $(\boldsymbol{a}, \boldsymbol{b})$ or $(\boldsymbol{b}, \boldsymbol{a})$
- perfect matching $M \subset E$ of G
- for the edges $\boldsymbol{a b}$ of \boldsymbol{M} (in any sequence), write down endpoints a, b in the order of the orientation of the edge. Define $\boldsymbol{\operatorname { s i g n }}(M)=$ parity of the resulting permutation of $1, \ldots, n$.

Signed perfect matchings

- $\operatorname{Graph} \boldsymbol{G}=(V, E), \quad V=\{1, \ldots, n\}$
- orient each edge $\boldsymbol{a b} \in E$ as $(\boldsymbol{a}, \boldsymbol{b})$ or $(\boldsymbol{b}, \boldsymbol{a})$
- perfect matching $\boldsymbol{M} \subset E$ of \boldsymbol{G}
- for the edges $\boldsymbol{a b}$ of \boldsymbol{M} (in any sequence), write down endpoints a, b in the order of the orientation of the edge. Define $\boldsymbol{\operatorname { s i g n }}(M)=$ parity of the resulting permutation of $1, \ldots, n$.

Euler graphs

Euler graph

- every node has even degree (= number of neighbours)

Euler graphs

Euler graph

- every node has even degree (= number of neighbours)
- has Eulerian orientation (indegree = outdegree)

Euler graphs ... have tours

Euler graph

- every node has even degree (= number of neighbours)
- has Eulerian orientation (indegree =outdegree) ... and tour

Signs of matchings in Euler graphs

Theorem
A graph with an Eulerian orientation has as many perfect matchings of sign \oplus as of sign Θ.

Signs of matchings in Euler graphs

Theorem
A graph with an Eulerian orientation has as many perfect matchings of sign \oplus as of sign Θ.

Proof:

Any two perfect matchings are connected by a pivoting path which connects matchings of opposite sign.

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph
123456

Finding a second perfect matching in an Euler graph
123456

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph
123456
$2 3 \longdiv { 3 4 } 5 6$
$\begin{array}{llll}23 & 45 & 56\end{array}$
234564
$23 \quad 5664$
$23 \quad 5642$
$\begin{array}{llll}3 & 56 & 42\end{array}$
$34 \quad 56 \quad 25$
$34 \quad 64 \quad 25$
$\begin{array}{lll}23 & 64 & 25\end{array}$

Finding a second perfect matching in an Euler graph
123456
$2 3 \longdiv { 3 4 } 5$
$\begin{array}{llll}23 & 45 & 56\end{array}$
234564
$23 \quad 5664$
235642
$\begin{array}{llll}3 & 4 & 56 & 42\end{array}$
345625
$34 \quad 64 \quad 25$
$\begin{array}{lll}23 & 64 & 25\end{array}$
236451

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

Finding a second perfect matching in an Euler graph

A computational problem

Input: Graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with Eulerian orientation and perfect matching of sign \oplus.

Output: A perfect matching with sign Θ.

A computational problem

Input: Graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with Eulerian orientation and perfect matching of sign \oplus.

Output: A perfect matching with sign Θ.

The pivoting algorithm finds this

- in linear time for bipartite graphs
- but may take exponential time in general [Morris 1994]

A computational problem

Input: Graph $\boldsymbol{G}=(V, E)$ with Eulerian orientation and perfect matching of sign \oplus.
Output: A perfect matching with $\operatorname{sign} \Theta$.
The pivoting algorithm finds this

- in linear time for bipartite graphs
- but may take exponential time in general [Morris 1994]

Note: A second matching can be found in polynomial time [Edmonds 1965], but not with sign Θ. Related difficult problem: Pfaffian orientations of graphs.

Finding a second matching of opposite sign

Theorem [Végh / von Stengel 2014]
Given a graph $G=(V, E)$ with an Eulerian orientation and a perfect matching of sign \oplus, a matching of sign Θ can be found in time near-linear* in $|\boldsymbol{E}|$.

Finding a second matching of opposite sign

Theorem [Végh / von Stengel 2014]
Given a graph $G=(V, E)$ with an Eulerian orientation and a perfect matching of sign \oplus, a matching of sign Θ can be found in time near-linear* in $|\boldsymbol{E}|$.

Suffices to find sign-switching cycle.

Finding a second matching of opposite sign

Theorem [Végh / von Stengel 2014]
Given a graph $G=(V, E)$ with an Eulerian orientation and a perfect matching of sign \oplus, a matching of sign Θ can be found in time near-linear* in $|\boldsymbol{E}|$.

Suffices to find sign-switching cycle.

* up to factor given by inverse Ackermann function α.

Sign-switching cycle (SSC)

Given an oriented graph and a perfect matching M, a sign-switching cycle is a cycle \boldsymbol{C} with every other edge in M and an even number of forward-pointing edges.
$\Rightarrow M \triangle C$ is a matching of opposite sign to M.

Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree $=$ outdegree $=\mathbf{1}$ with its two edges

Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree $=$ outdegree $=\mathbf{1}$ with its two edges

Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree $=$ outdegree $=\mathbf{1}$ with its two edges

Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree $=$ outdegree $=\mathbf{1}$ with its two edges

2. delete directed cycle of unmatched edges

Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree $=$ outdegree $=\mathbf{1}$ with its two edges

2. delete directed cycle of unmatched edges

Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree $=$ outdegree $=\mathbf{1}$ with its two edges

2. delete directed cycle of unmatched edges

Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree $=$ outdegree $=\mathbf{1}$ with its two edges

2. delete directed cycle of unmatched edges
until trivial SSC found

Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree $=$ outdegree $=\mathbf{1}$ with its two edges

2. delete directed cycle of unmatched edges
until trivial SSC found

Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree $=$ outdegree $=\mathbf{1}$ with its two edges

2. delete directed cycle of unmatched edges
until trivial SSC found, re-insert contracted edge pairs

Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree $=$ outdegree $=\mathbf{1}$ with its two edges

2. delete directed cycle of unmatched edges
until trivial SSC found, re-insert contracted edge pairs

Finding a SSC in near-linear time

Two reductions which preserve Euler and matching property:

1. contract node of indegree $=$ outdegree $=\mathbf{1}$ with its two edges

2. delete directed cycle of unmatched edges
until trivial SSC found, re-insert contracted edge pairs, switch.

Bimatrix games and signed matchings

- Lemke-Howson for bimatrix games can take exponential time [Savani / von Stengel 2004], like complementary pivoting on labeled polytopes [Morris 1994].

Bimatrix games and signed matchings

- Lemke-Howson for bimatrix games can take exponential time [Savani / von Stengel 2004], like complementary pivoting on labeled polytopes [Morris 1994].
- Proved using dual cyclic polytopes, defined by \boldsymbol{n} inequalities in \boldsymbol{d}-space with vertices characterized by Gale evenness:

Gale string = bitstring of length \boldsymbol{n} with \boldsymbol{d} bits $\mathbf{1}$ with forbidden odd runs of 1's such as 010, 01110, 0111110, ...

Examples: 111111000, 011011110, 111001101.

Bimatrix games and signed matchings

- Lemke-Howson for bimatrix games can take exponential time [Savani / von Stengel 2004], like complementary pivoting on labeled polytopes [Morris 1994].
- Proved using dual cyclic polytopes, defined by \boldsymbol{n} inequalities in \boldsymbol{d}-space with vertices characterized by Gale evenness:

Gale string = bitstring of length \boldsymbol{n} with \boldsymbol{d} bits $\mathbf{1}$ with forbidden odd runs of 1's such as 010, 01110, 0111110, ...

Examples: 111111000, 011011110, 111001101.

- Gale string = vertex, bit $\mathbf{1}$ = facet (tight inequality).

Labeled Gale strings

Dual cyclic \boldsymbol{d}-polytope with \boldsymbol{n} facets has vertices encoded as Gale strings.

Labeled Gale strings

Dual cyclic \boldsymbol{d}-polytope with \boldsymbol{n} facets has vertices encoded as Gale strings. Take n-string of facet labels in $\{1, \ldots, d\}$, e.g.

123456425

Labeled Gale strings

Dual cyclic \boldsymbol{d}-polytope with \boldsymbol{n} facets has vertices encoded as Gale strings. Take n-string of facet labels in $\{1, \ldots, d\}$, e.g.

123456425	labels of Gale string
111111000	123456 (completely labeled)
011011110	223456 (not completely labeled)
111001101	123456 (completely labeled)

Labeled Gale strings

Dual cyclic \boldsymbol{d}-polytope with \boldsymbol{n} facets has vertices encoded as Gale strings. Take n-string of facet labels in $\{1, \ldots, d\}$, e.g.

123456425	labels of Gale string
111111000	123456 (completely labeled)
011011110	223456 (not completely labeled)
111001101	123456 (completely labeled)

Theorem [Casetti / Merschen / von Stengel 2010]
The completely labeled Gale strings are the perfect matchings of the graph with nodes $1, \ldots, d$ and an Euler tour given by the label string. This preserves pivoting and signs.

Labeled Gale strings

Dual cyclic \boldsymbol{d}-polytope with \boldsymbol{n} facets has vertices encoded as Gale strings. Take n-string of facet labels in $\{1, \ldots, d\}$, e.g.

123456425	labels of Gale string
111111000	123456 (completely labeled)
011011110	223456 (not completely labeled)
111001101	123456 (completely labeled)

Theorem [Casetti / Merschen / von Stengel 2010]
The completely labeled Gale strings are the perfect matchings of the graph with nodes $1, \ldots, d$ and an Euler tour given by the label string. This preserves pivoting and signs.

Labeled Gale strings

Dual cyclic \boldsymbol{d}-polytope with \boldsymbol{n} facets has vertices encoded as Gale strings. Take n-string of facet labels in $\{1, \ldots, d\}$, e.g.

123456425	labels of Gale string
111111000	123456 (completely labeled)
011011110	223456 (not completely labeled)
111001101	123456 (completely labeled)

Theorem [Casetti / Merschen / von Stengel 2010]
The completely labeled Gale strings are the perfect matchings of the graph with nodes $1, \ldots, d$ and an Euler tour given by the label string. This preserves pivoting and signs.

Oiks and pivoting

Definition [Edmonds 2009] (V, $\mathcal{R}) \boldsymbol{d}$-oik (Euler complex)
$\Leftrightarrow \quad V$ finite set of nodes, $\quad \mathcal{R}$ multiset of rooms \boldsymbol{R} with $|\boldsymbol{R}|=\boldsymbol{d}$, any wall $\boldsymbol{W}=\boldsymbol{R}-\{\boldsymbol{v}\}$ for $\boldsymbol{v} \in \boldsymbol{R} \in \mathcal{R}$ is contained in an even number of rooms

Oiks and pivoting

Definition [Edmonds 2009] (V, $\mathcal{R}) \boldsymbol{d}$-oik (Euler complex)
$\Leftrightarrow \quad V$ finite set of nodes, $\quad \mathcal{R}$ multiset of rooms \boldsymbol{R} with $|\boldsymbol{R}|=\boldsymbol{d}$, any wall $\boldsymbol{W}=\boldsymbol{R}-\{\boldsymbol{v}\}$ for $\boldsymbol{v} \in \boldsymbol{R} \in \mathcal{R}$ is contained in an even number of rooms (in two rooms: \mathcal{R} called manifold).

Oiks and pivoting

Definition [Edmonds 2009] (V, $\mathcal{R}) \boldsymbol{d}$-oik (Euler complex)
$\Leftrightarrow \quad V$ finite set of nodes, \mathcal{R} multiset of rooms \boldsymbol{R} with $|\boldsymbol{R}|=\boldsymbol{d}$, any wall $\boldsymbol{W}=\boldsymbol{R}-\{\boldsymbol{v}\}$ for $\boldsymbol{v} \in \boldsymbol{R} \in \mathcal{R}$ is contained in an even number of rooms (in two rooms: \mathcal{R} called manifold).

Example $\boldsymbol{d}=\mathbf{2}$: Euler graph with nodes in V and edges in \mathcal{R}.

Oiks and pivoting

Definition [Edmonds 2009] (V, $\mathcal{R}) \boldsymbol{d}$-oik (Euler complex)
$\Leftrightarrow \quad V$ finite set of nodes, \mathcal{R} multiset of rooms R with $|\boldsymbol{R}|=\boldsymbol{d}$, any wall $W=\boldsymbol{R}-\{\boldsymbol{v}\}$ for $\boldsymbol{v} \in \boldsymbol{R} \in \mathcal{R}$ is contained in an even number of rooms (in two rooms: \mathcal{R} called manifold).

Example $\boldsymbol{d}=\mathbf{2}$: Euler graph with nodes in V and edges in \mathcal{R}.
manifold, $\boldsymbol{d}=\mathbf{3}$

$$
d=2
$$

Oiks and pivoting

Definition [Edmonds 2009] (V, $\mathcal{R}) \boldsymbol{d}$-oik (Euler complex)
$\Leftrightarrow \quad V$ finite set of nodes, $\quad \mathcal{R}$ multiset of rooms \boldsymbol{R} with $|\boldsymbol{R}|=\boldsymbol{d}$, any wall $W=\boldsymbol{R}-\{\boldsymbol{v}\}$ for $\boldsymbol{v} \in \boldsymbol{R} \in \mathcal{R}$ is contained in an even number of rooms (in two rooms: \mathcal{R} called manifold).

Example $\boldsymbol{d}=\mathbf{2}$: Euler graph with nodes in V and edges in \mathcal{R}.
manifold, $\boldsymbol{d}=\mathbf{3}$ pivoting

$$
d=2
$$

Room partitions come in pairs

Given an oik \mathcal{R} with node set V, a room partition is a partition of V into rooms.

Theorem [Edmonds 2009]
The number of room partitions is even.

Room partition for 3-manifold

Room partition for 3-manifold

w-almost room partition

w-almost room partition

w-almost room partition

w-almost room partition

\boldsymbol{w}-almost room partition

w-almost room partition

w-almost room partition

w-almost room partition

Found second room partition

[Edmonds / Sanità 2010]: exponentially long path

[Edmonds / Sanità 2010]: exponentially long path

[Edmonds / Sanità 2010]: exponentially long path

[Edmonds / Sanità 2010]: exponentially long path

[Edmonds / Sanità 2010]: exponentially long path

[Edmonds / Sanità 2010]: exponentially long path

6 extra nodes, 12 extra rooms

Path length more than doubles

Path length more than doubles

Forward recursion

Backward recursion

Final steps

Final steps

Final steps

General construction: exponentially long path

Orienting oiks

$W=\boldsymbol{R}-\{\boldsymbol{v}\}$ for $\boldsymbol{v} \in \boldsymbol{R}$ is called a wall of a room \boldsymbol{R}

Orienting oiks

$W=\boldsymbol{R}-\{\boldsymbol{v}\}$ for $\boldsymbol{v} \in \boldsymbol{R}$ is called a wall of a room \boldsymbol{R}

A \boldsymbol{d}-manifold is orientable if each room has a sign \oplus or Θ so that any two rooms with a common wall W induce opposite orientation on W (\Leftrightarrow pivoting changes sign).

Orienting oiks

$W=\boldsymbol{R}-\{\boldsymbol{v}\}$ for $\boldsymbol{v} \in \boldsymbol{R}$ is called a wall of a room \boldsymbol{R}

A \boldsymbol{d}-manifold is orientable if each room has a sign \oplus or Θ so that any two rooms with a common wall W induce opposite orientation on W (\Leftrightarrow pivoting changes sign).

Orienting oiks

$W=\boldsymbol{R}-\{\boldsymbol{v}\}$ for $\boldsymbol{v} \in \boldsymbol{R}$ is called a wall of a room \boldsymbol{R}

A \boldsymbol{d}-manifold is orientable if each room has a sign \oplus or Θ so that any two rooms with a common wall W induce opposite orientation on W (\Leftrightarrow pivoting changes sign).

A \boldsymbol{d}-oik is orientable if half of the rooms with a common wall W induce sign \oplus on W, the other half sign Θ on W.

How to orient room partitions?

Example: orientable manifold

How to orient room partitions?

Example: orientable manifold

How to orient room partitions?

Room partition $\boldsymbol{A}, \mathbf{a}=\{\mathbf{1}, \mathbf{3}, \mathbf{5}\},\{\mathbf{2}, \mathbf{4}, \mathbf{6}\}$

How to orient room partitions?

Room partition $\boldsymbol{A}, \boldsymbol{a}$: drop node 1

$A, a \stackrel{(1)}{\sim} c, a$

How to orient room partitions?

Room partition $\boldsymbol{A}, \boldsymbol{a}$, sign \oplus : drop node 1 leads to $\boldsymbol{c}, \boldsymbol{C}, \operatorname{sign} \Theta$

$$
\stackrel{\oplus}{\boldsymbol{A}, \boldsymbol{a} \stackrel{1}{\sim}} \boldsymbol{c}, \boldsymbol{a} \rightarrow \boldsymbol{c}, \boldsymbol{c}
$$

How to orient room partitions?

Room partition $\boldsymbol{A}, \mathbf{a}$, sign \oplus : drop node $\mathbf{3}$

How to orient room partitions?

Room partition $\boldsymbol{A}, \boldsymbol{a}$, sign \oplus : drop node $\mathbf{3}$ leads to $\boldsymbol{B}, \boldsymbol{b}$, sign Θ

How to orient room partitions?

Room partition $\boldsymbol{c}, \boldsymbol{c}$, sign Θ : drop node 5

How to orient room partitions?

Room partition $\boldsymbol{c}, \boldsymbol{c}$, sign Θ : drop node 5

How to orient room partitions?

Room partition $\boldsymbol{c}, \boldsymbol{C}$, sign Θ : drop node 5 leads to $\boldsymbol{b}, \boldsymbol{B}, \operatorname{sign} \oplus$

How to orient room partitions?

Which sign for $\{\boldsymbol{b}, \boldsymbol{B}\}$?

How to orient room partitions?

Which sign for $\{\boldsymbol{b}, \boldsymbol{B}\} ? \oplus$ for $\boldsymbol{b}, \boldsymbol{B}, \ominus$ for $\boldsymbol{B}, \boldsymbol{b}$!

How to orient room partitions?

\Rightarrow for odd dimension (here $\boldsymbol{d}=3$), order of rooms matters: permutations 263154 (for $\boldsymbol{b}, \boldsymbol{B}$) and 154263 (for $\boldsymbol{B}, \boldsymbol{b}$) have opposite parity.

Ordered room partitions

Theorem [Végh / von Stengel 2014]
Let \mathcal{R} be an oriented \boldsymbol{d}-oik with node set V. Then the number of ordered room partitions ($R_{1}, \ldots, R_{|V| / d}$) is even.
Any two ordered room partitions connected by a pivoting path have opposite sign, and the respective unordered partitions are distinct.

Ordered room partitions

Theorem [Végh / von Stengel 2014]
Let \mathcal{R} be an oriented \boldsymbol{d}-oik with node set V. Then the number of ordered room partitions ($R_{1}, \ldots, R_{|V| / d}$) is even.
Any two ordered room partitions connected by a pivoting path have opposite sign, and the respective unordered partitions are distinct.

If \boldsymbol{d} is even, the order of rooms in a room partition is irrelevant.

Ordered room partitions

Theorem [Végh / von Stengel 2014]
Let \mathcal{R} be an oriented \boldsymbol{d}-oik with node set V. Then the number of ordered room partitions ($R_{1}, \ldots, R_{|V| / d}$) is even.
Any two ordered room partitions connected by a pivoting path have opposite sign, and the respective unordered partitions are distinct.

If \boldsymbol{d} is even, the order of rooms in a room partition is irrelevant.

Proof uses "pivoting systems" with labels = nodes.
Pivoting systems generalize labeled polytopes, Lemke's algorithm, Sperner's lemma, room partitions in oiks, and more.

Summary of results

- complementary pivoting paths on polytopes find equilibria in games

Summary of results

- complementary pivoting paths on polytopes find equilibria in games
- if pivoting is sign-switching (orientability) \Rightarrow endpoints of paths have opposite signs $\oplus \ominus$

Summary of results

- complementary pivoting paths on polytopes find equilibria in games
- if pivoting is sign-switching (orientability) \Rightarrow endpoints of paths have opposite signs $\oplus \ominus$
- opposite-signed matching in Euler graph found in linear time

Summary of results

- complementary pivoting paths on polytopes find equilibria in games
- if pivoting is sign-switching (orientability) \Rightarrow endpoints of paths have opposite signs $\oplus \ominus$
- opposite-signed matching in Euler graph found in linear time
- exponentially long paths for matchings in Euler graph emulate exponentially long Lemke-Howson paths in games
- we can orient oiks and room partitions (in odd dimension: need ordered partition).

Thank you!

