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Abstract

This thesis provides a new geometric-combinatorial construction to characterise the

Nash equilibria of a non-degenerate bimatrix game and their indices. Considering a

non-degeneratem×n bimatrix game, the construction yields an(m−1)-simplexX4

that is simplicially divided into(m−1)-simplices, reflecting the best reply structure of

player II. Each(m−1)-simplex in the triangulation is divided into best reply regions

of player I. This yields a division ofX4 into regions with labels1, . . . ,m.

In this representation, the Nash equilibria are represented by completely labelled

points, and the index is the local orientation of them regions around completely la-

belled points. For a missing label of player I, the Lemke-Howson algorithm follows

paths inX4 that are defined bym−1 labels of player I.

This representation of bimatrix games is shown to be related to Sperner’s Lemma

in dimensionm−1. In particular, the existence of Nash equilibria in non-degenerate

bimatrix games is equivalent to Brouwer’s fixed point theorem.

The construction yields a new strategic characterisation of the index, conjectured

by Hofbauer (2000). It is shown that a Nash equilibrium in a non-degenerate bimatrix

game has index +1 if and only if one can add strategies to the game such that the

equilibrium is the unique equilibrium of the extended game.

The construction can be extended to outside option equilibrium components in

bimatrix games. The characterisation for such components is shown to be similar to the

well-known Index Lemma. As a consequence, index zero boundary labellings allow

triangulations that do not contain a completely labelled simplex. The game theoretic

counterpart applies to outside option equilibrium components. It is shown that an

outside option equilibrium component is hyperessential if and only if it has non-zero

index. This question had been open for some time.

It is also shown how equilibrium components of arbitrary index can be constructed

by means of outside options in bimatrix games.
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Introduction

Since Shapley (1974) introduced the index for equilibria, its importance in the context

of game theory has been increasingly appreciated. For example, index theory can be

a useful tool with regards to strategic characterisations of equilibria and equilibrium

components. Demichelis and Ritzberger (2003) show that an equilibrium component

can only be evolutionary stable if its index equals its Euler characteristic. At the same

time, most of the existing literature on the index is technically demanding, and the

amount of algebraic topology required is substantial. As a consequence, this literature

is difficult to access for most economists and other applied game theorists.

The contribution of this thesis can be divided into two parts. The first part concerns

methods and techniques. By introducing a new geometric-combinatorial construction

for bimatrix games, this thesis gives a new, intuitive re-interpretation of the index. This

re-interpretation is to a large extent self-contained and does not require a background

in algebraic topology. The second part of this thesis concerns the relationship between

the index and strategic properties. In this context, the thesis provides two new results,

both of which are obtained by means of the new construction and are explained in

further detail below. The first result shows that, in non-degenerate bimatrix games, the

index can fully be described by a simple strategic property. It is shown that the index

of an equilibrium is+1 if and only if one can add strategies with new payoffs to the

game such that the equilibrium remains the unique equilibrium of the extended game.

The second result shows that the index can be used to describe a stability property

of equilibrium components. For outside option components in bimatrix games, it is

shown that such a component is hyperessential if and only if it has non-zero index.

The new geometric-combinatorial construction, which is referred to as thedual

construction, can be described as follows. For anm×nbimatrix game, the construction

translates the combinatorial structure of the best reply regions for both players into an

(m−1)-simplex that is divided into simplices and labelled regions (see, for example,

Figure 2.6 below). The simplices in the division account for the best reply structure

of player II. The simplices themselves are divided into best reply regions for player I,

accounting for the best reply structure of player I.
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In this representation of bimatrix games, the Nash equilibria are represented by

points that are completely labelled with all pure strategies of player I. Earlier con-

structions required the use of all pure strategies of both players as labels. The index

is simply the local orientation of the labels around a completely labelled point (Fig-

ure 2.11). The Lemke-Howson algorithm, which builds the foundation for Shapley’s

original index definition, can be re-interpreted as a path-following algorithm in the new

construction (Figure 2.8). Since the new construction is of dimensionm−1, both the

index and the Lemke-Howson algorithm can be visualised in dimension at most3 for

everym×n bimatrix game withm≤ 4.

But the construction does not merely yield an intuitive re-interpretation of the index

and the Lemke-Howson algorithm. More significantly, it can disclose relationships

between the index and strategic properties. In this context, this thesis provides, as

mentioned, two new results.

As for the first result, it is shown that the index of an equilibrium is+1 if and only

if it is the unique equilibrium of an extended game. The result proves a conjecture by

Hofbauer (2000) in the context of equilibrium refinement. The proof is based on the

idea that one can divide an(m−1)-simplex such that there exists only one completely

labelled point which represents the index+1 equilibrium (Figure 4.7). Then such a

division can be achieved as the dual construction of an extended game where strategies

for player II are added (Figure 4.8).

The second result solves, for a special case, a problem that was open for some

time. This problem addresses the question whether and how topological essential-

ity and game theoretic essentiality (Wu and Jiang (1962); Jiang (1963)) are related.

Govindan and Wilson (1997b) argue that the resolution of this problem is highly rele-

vant with respect to axiomatic studies: Imposing topological essentiality as an axiom

in a decision-theoretic agenda is questionable if there is a gap between topological and

strategic essentiality. Hauk and Hurkens (2002) construct a game with an outside op-

tion equilibrium component that has index zero but is essential. This demonstrates that

topological essentiality is not equivalent to strategic essentiality. However, their exam-

ple fails the requirement of hyperessentiality, i.e. the component is not essential in all

equivalent games (Kohlberg and Mertens (1986)). The follow-up question is whether

hyperessentiality is the game theoretic counterpart of topological essentiality. In this
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thesis, it is shown that this is the case for outside option equilibrium components in

bimatrix games. That is, an outside option equilibrium component in a bimatrix game

is hyperessential if and only if it has non-zero index. The proof is based on creat-

ing equivalent games by duplicating the outside option. An example presented in this

thesis shows that one can create an outside option equilibrium component that has in-

dex zero and is essential in all equivalent games that do not contain duplicates of the

outside option. However, it can be shown that the component fails the requirement of

hyperessentiality if allowing duplicates of the outside option.

The proof of this result employs the combinatorial nature of the index for compo-

nents of equilibria. In the framework of the dual construction, the index for compo-

nents of equilibria is defined by a combinatorial division of a boundary into labelled

best reply regions. This re-interpretation of the index for components is very similar to

the index in the framework of the Index Lemma, a generalisation of Sperner’s Lemma.

For labellings as in the Index Lemma it is shown that, if the index of a boundary

triangulation is zero, then there exists a labelled triangulation such that the triangula-

tion does not contain a completely labelled simplex. The proof extends an index-zero

boundary division of a polytope into labelled regions such that no point in the interior

of the polytope is completely labelled. This extension is then translated into a triangu-

lation (Figure 6.2). The proof for outside option components works similarly. Given an

index-zero component, the dual of the component can be divided into labelled regions

such that no point is completely labelled. It is then shown that such a division can be

achieved as the dual construction of an equivalent game in which the outside option is

duplicated and perturbed (Figure 6.10).

The concept of essentiality is strongly influenced by the theory of fixed points and

essential fixed point components (Fort, 1950). In a parallel and independent work,

Govindan and Wilson (2004) show that, for generalN-player games and general equi-

librium components, a component has non-zero index if and only if it is hyperessential.

Their proof is based on a well-known result from fixed point theory that shows that a

fixed point component is essential if and only if it has non-zero index (O’Neill, 1953).

Their proof is technically very demanding. In contrast, the proof presented here for the

special case provides a geometric intuition and does not require a knowledge of fixed

point theory.
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There is, however, a link between the combinatorial approach of this thesis and

fixed point theory. This link is established via Sperner’s Lemma (Sperner, 1928). The

representation of bimatrix games in form of the dual construction reveals strong analo-

gies with Sperner’s Lemma. Sperner’s Lemma is a classical result from combinatorial

topology and is equivalent to Brouwer’s fixed point theorem. Using the parallels of

the dual construction with Sperner’s Lemma it is shown that the existence of Nash

equilibria in a non-degenerate bimatrix game is equivalent to Brouwer’s fixed point

theorem. On a similar topic, McLennan and Tourky (2004) derive Kakutani’s fixed

point theorem using the Lemke-Howson algorithm.

An additional result of this thesis, which does not involve the dual construction,

is the construction of equilibrium components with arbitrary index. It is shown that

for every integerq there exists a bimatrix game with an outside option equilibrium

component that has indexq. The construction is purely based on the properties of the

index, and does not require knowledge of algebraic topology. This result originates

from Govindan, von Schemde and von Stengel (2003).

The structure of this thesis is as follows. Chapter 1 introduces notations and con-

ventions used throughout this work (Section 1.1). Sections 1.2 and 1.3 contain reviews

of the Lemke-Howson algorithm and index theory. Section 1.4 shows how equilib-

rium components of arbitrary index can be constructed. Chapter 2 introduces the dual

construction (Sections 2.1 and 2.2) and gives a re-interpretation of the index and the

Lemke-Howson algorithm (Sections 2.3 and 2.4). Chapter 3 describes the parallels

between the dual construction, Sperner’s Lemma, and Brouwer’s fixed point theorem.

In Chapter 4, it is shown that the index for non-degenerate bimatrix games can be fully

described by a strategic property. In Chapter 5, the dual construction is extended to

outside option equilibrium components (Section 5.2). It also contains a review of the

Index Lemma (Section 5.1). Finally, Chapter 6 investigates the relationship between

the index and hyperessentiality. Section 6.1 considers index-zero labellings in the con-

text of the Index Lemma. In Section 6.2, it is shown that an outside option equilibrium

component is hyperessential if and only if it has non-zero index. A list of symbols is

given at the end. Proofs and constructions are illustrated by figures throughout this

work.
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Chapter 1

Equilibrium Components with

Arbitrary Index

This chapter describes a method of constructing equilibrium components of arbitrary

index by using outside options in bimatrix games. It is shown that for every inte-

gerq there exists a bimatrix game with an outside option equilibrium component that

has indexq. The construction is similar to the one used in Govindan, von Schemde

and von Stengel (2003). That paper also shows thatq-stable sets violate a symmetry

property which the authors refer to as theweak symmetry axiom. The construction of

equilibrium components of arbitrary index is the main result of this chapter.

The structure of this chapter is as follows. Section 1.1 introduces notational con-

ventions and definitions that are used throughout this work. Section 1.2 gives a brief

review of the classical Lemke-Howson algorithm that finds at least one equilibrium in a

non-degenerate bimatrix game. Although the Lemke-Howson algorithm does not play

a role in the construction of equilibrium components of arbitrary index, it can be used in

the index theory for non-degenerate bimatrix games. Shapley (1974) shows that equi-

libria at the ends of a Lemke-Howson path have opposite indices. The Lemke-Howson

algorithm also plays an important role in subsequent chapters when it is interpreted in

a new geometric-combinatorial construction (see Chapters 2 and 3). Section 1.3 re-

views the concept of index for Nash equilibria in both non-degenerate bimatrix games

and generalN-player games. Using basic properties of the index for components of

Nash equilibria, Section 1.4 shows how equilibrium components of arbitrary index can
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be constructed as outside options in bimatrix games. It is shown that for every inte-

ger q there exists a bimatrix game with an equilibrium component that has indexq

(Proposition 1.6).

1.1 Preliminaries

The following notations and conventions are used throughout this work. The

k-dimensional real space is denoted asRk, with vectors as column vectors. Anm×n

bimatrix game is represented by twom×n payoff matricesA andB, where the entries

Ai j andBi j denote the payoffs for player I and player II in thei-th row andj-th column

of A andB. The set of pure strategies of player I is denoted byI = {1, . . . ,m}, and the

set of pure strategies of player II is represented byN = {1, . . . ,n}. The rows ofA and

B are denotedai andbi for i ∈ I , and the columns ofA andB are denotedA j andB j for

j ∈ N. The sets of mixed strategies for player I and player II are given by

X =
{

x∈ Rm | 1>mx = 1, xi ≥ 0 ∀ i ∈ I
}

, Y =
{

y∈ Rn | 1>n y = 1, y j ≥ 0 ∀ j ∈ N
}

,

where1k ∈ Rk denotes the vector with entry1 in every row. For easier distinction of

the pure strategies, letJ = {m+ 1, . . . ,m+ n}, following Shapley (1974). Anyj ∈ N

can be identified withm+ j ∈ J and vice versa. Alabel is any element inI ∪ J. For

notational convenience, the labelj is sometimes used to refer to the pure strategyj−m

of player II if there is no risk of confusion.

X is a standard(m−1)-simplex that is given by the convex hull of the unit vectors

ei ∈ Rm, i ∈ I , andY is a standard(n−1)-simplex given by the convex hull of the unit

vectorsej−m∈ Rn, j ∈ J. The terms “(m−1)” and “(n−1)” refer to the dimension of

the simplex. In general, an(m−1)-simplex is the convex hull ofmaffinely independent

points in some Euclidian space. These points are theverticesof the simplex, and the

simplex is said to bespannedby its vertices.

An affine combinationof pointsz1, . . . ,zm in an Euclidian space can be written as

∑m
i=1λizi with ∑m

i=1λi = 1 andλi ∈ R, i = 1, . . . ,m. A convex combinationis an affine

combination with the restrictionλi ≥ 0, i = 1, . . . ,m. A set ofm pointsz1, . . . ,zm is

affinely independentif none of these points is an affine combination of the others. This

is equivalent to saying that∑m
i=1λizi = 0 and∑m

i=1λi = 0 imply thatλ1 = . . . = λm = 0.
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A convex set hasdimensiond if it hasd+1, but no more, affinely independent points.

A k-faceof an(m−1)-simplex is thek-simplex spanned by any subset ofk+1 vertices.

The standard(m−1)-simplex spanned by the unit vectors inRm is denoted by4m−1.

SoX =4m−1 andY =4n−1.

For a mixed strategyx∈ X, the support ofx are the labels of those pure strategies

that are played with positive probability inx. The support fory∈Y is defined similarly.

So

supp(x) = {i ∈ I | xi > 0}, supp(y) = { j ∈ J | y j−m > 0}.

The strategy setsX andY can be divided into best reply regionsX( j) andY(i). These

are the regions inX where j ∈ J is a best reply and the regions inY wherei ∈ I is a

best reply, so

X( j) =
{

x∈ X | B>j x≥ B>k x ∀ k∈ J
}

, Y(i) = {y∈Y | aiy≥ aky ∀ k∈ I} .

The regionsX( j) andY(i) are (possibly empty) closed and convex regions that cover

X andY. For a pointx in X the setJ(x) consists of the labels of those strategies of

player II that are a best reply with respect tox. The setI(y) is defined accordingly, so

J(x) = { j ∈ J | x∈ X( j)} , I(y) = {i ∈ I | y∈Y(i)} . (1.1)

For i ∈ I , the setX(i) denotes the(m−2)-face ofX where thei-th coordinate equals

zero. For j ∈ J, the setY( j) is defined as the(n−2)-face ofY where the( j −m)-th

coordinate equals zero.

X(i) =
{

(x1, . . . ,xm)> ∈ X | xi = 0
}

, Y( j) =
{

(y1, . . . ,yn)> ∈Y | y j−m = 0
}

.

Similar to (1.1), the setsI(x) andJ(y) are defined as

I(x) = {i ∈ I | x∈ X(i)} , J(y) = { j ∈ J | y∈Y( j)} . (1.2)

The labelsL(x) of a pointx∈ X and the labelsL(y) of a pointy∈Y are defined as

L(x) = {k∈ I ∪J | k∈ X(k)} , L(y) = {k∈ I ∪J | k∈Y(k)} . (1.3)

From (1.1) and (1.2) it follows thatL(x) = I(x)∪ J(x) andL(y) = I(y)∪ J(y). So the

labels of a pointx ∈ X are those pure strategies of player I that are played with zero

probability inx and those strategies of player II that are best replies tox. Similarly, the

labels ofy∈Y are those pure strategies of player II that are played with zero probability

in y and those strategies of player I that are best replies toy.
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Definition 1.1 An m×n bimatrix game is called non-degenerate if for allx∈ X and

y∈Y the number of best reply strategies againstx is at most the size of the support of

x, and the number of best reply strategies againsty is at most the size of the support of

y, i.e. |J(x)| ≤ |supp(x)| and|I(y)| ≤ |supp(y)| for all x∈ X andy∈Y.

It follows directly that in a non-degenerate game a pointx∈X can have at mostm labels

L(x) and that a pointy in Y can have at mostn labelsL(y). Non-degeneracy implies that

X( j) andY(i) are either full-dimensional or empty (in which case a strategy is strictly

dominated). For non-degenerate games the set of verticesV ⊂ X is defined as those

points inX that lie on some(k−1)-face ofX and that havek pure best reply strategies

in player II’s strategy space. The set of verticesW in Y is defined accordingly, i.e.

V = {v∈ X | supp(v) = k, |J(v)|= k} , W = {w∈Y | supp(w) = k, |I(w)|= k} .

Non-degeneracy implies thatV is the set of those points inX that have exactlym labels,

andW is the set of those points inY that have exactlyn labels. Notice that the unit

vectors inRm andRn, i.e. those representing the pure strategies inX andY, are inV

andW. An edgein X is defined bym−1 labels, and an edge inY is defined byn−1

labels. For subsetsK,K′ ⊂ I ∪J let

X(K) = {x∈ X | K ⊂ L(x)}, Y(K′) = {y∈Y | K′ ⊂ L(y)}. (1.4)

That is, in case|K| = m−1 and |K′| = n−1, an edge inX is defined byX(K), and

an edge inY is defined byY(K′). If the game is non-degenerate, every edge inX and

every edge inY is a line segment.

The notion of vertices and edges comes from the study of polyhedra and polytopes

(see e.g. Ziegler (1995)). In general, apolyhedronH is a subset ofRd that is defined by

a finite number of linear inequalities. If the dimension ofH is d, then it is called full-

dimensional. A polyhedron that is bounded is called apolytope. A faceof a polytope

P is the intersection ofP with a hyperplane for which the polytope is contained in one

of the two halfspaces determined by the hyperplane. If these faces are single points,

they are calledvertices, if they are1-dimensional line segments, they are callededges.

If the dimension of a face is one less than the dimension of the polytope, it is called

facet.
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For a bimatrix game with payoff matrixB for player II, one can define a polyhedron

over player I’s mixed strategy spaceX as follows.

H = {(x,v) ∈ X×R | 1>mx = 1, B>x≤ 1nv, xi ≥ 0 ∀ i ∈ I} (1.5)

The polyhedronH is referred to as thebest reply polyhedron. In a similar fashion,

one can define the best reply polyhedron overY using the payoff matrixA. Note

that one can assume that all entries ofA and B are strictly greater than zero, since

adding a positive constant to the payoffs does not affect the Nash equilibria of a game.

The polyhedronH is described by the upper envelope, that is, the maximum, of the

expected payoffs for pure strategies of player II as functions of the mixed strategy

played by player I.

Figure 1.1 depicts the polyhedronH for the payoff matrix

B =


6 4 1

1 3 5


 .

For example, the line that describes the facet with label3 is given by the line between

v = 6 for pure strategy1, and payoffv = 1 for pure strategy2. The labels of a point

on the boundary ofH are the “labels” of the linear inequalities that are binding in

that point. A vertex ofH is described bym binding linear inequalities, edges ofH are

described bym−1 binding linear inequalities. Each(m−1)-facet of the polyhedronH

is defined by a single binding inequality and corresponds either to a best reply strategy

of player II or to an unplayed strategy of player I. IfH is projected ontoX, it yields the

division ofX into best reply regionsX( j).

The above definitions can be illustrated using the3×3 bimatrix game that is given

by the following payoff matrices, taken from von Stengel (1999a).

A =




0 3 0

1 0 1

−3 4 5


 B =




0 1 −2

2 0 3

2 1 0


 . (1.6)

The mixed strategy spaceX of player I is a2-simplex, and so is the mixed strategy

spaceY of player II. Figure 1.2 shows the divisions ofX andY into best reply regions.

For notational convenience, the subsetsX(k) andY(k), for k ∈ I ∪ J, are just denoted

by their label in Figure 1.2. The verticesv∈V are emphasised by dots and are exactly
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Figure 1.1: The best reply polyhedron
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those points inX that have three labels. A boundary1-face ofX carries the label of

the pure strategy that is played with zero probability on that face. So, for example, the

pure strategy(0,0,1)> ∈ X has labels{1,2,4}, since strategies1,2 are played with

zero probability, and strategy4 of player II is the pure best reply strategy.

Figure 1.2: The division ofX andY for the game in (1.6)

6

2 1

3 6

5 4
3

2
1

4

5

X Y

.
.

. ... .

.

..
.

.

. .

A perturbationof a bimatrix game is defined by twom× n matrices,εA andεB.

Theperturbed gameis given by the game with payoff matricesA+ εA andB+ εB. A

perturbation is said to be small if‖εA‖,‖εB‖ ≤ ε for some smallε ≥ 0, where‖ · ‖
denotes the Euclidian (or the maximum) norm onRmn. A perturbation isgenericif the

resulting perturbed game is non-degenerate.

The subsequent chapters use the concept of orientation as a definition of the index

for Nash equilibria. For anm-tuple of vectorsV = (v1, . . . ,vm) in Rm, an orientation
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can be defined using the following term:

sign detV = sign det
[
v1 . . . vm

]
. (1.7)

This term is+1 or−1 if and only if the vectors inV span an(m−1)-simplex that is

contained in a hyperplane not containing0∈Rm. The two signs yield two equivalence

classes of ordered vectors in general position. Choosing a standard orientation (which

is usually that induced by the unit vectorse1, . . . ,em), the orientation ofV is +1 if it

belongs to the same orientation class as the chosen standard orientation, and it is−1

otherwise.

The orientation can also be described as the sign of a permutation matrix. Suppose

one has a set ofm vectors that are in general position, and each vector has a distinct

label i ∈ {1, . . . ,m}. Then the vectors can be ordered according to their labelling, and

(1.7) can be applied to determine the orientation of the labelled set of vectors. Let the

so-ordered set of vectors be denoted asV . At the same time, one can re-order the

vectors in such a way that (1.7) yields the same sign as that of the chosen standard

orientation. Let this re-ordered basis be denoted asV ′. Both V andV ′ are a basis of

Rm, where one basis is a permutation of the other basis. The basis transformation is

described by a permutation matrixD such thatV ′ = D ·V , sodetV ′ = detD ·detV .

Hencedet D = +1 if det V ′ = det V , anddet D = −1 if det V ′ = −det V . So the

determinant of the permutation matrixD, which is either+1 or−1, can also be used

to describe the orientation. An illustration of the orientation concept is depicted in

Figure 1.3. For the vectorsv1,v2,v3 as in Figure 1.3 the determinant has sign−1.

The associated permutation of the labels, written as a product of cycles, is given by

(1)(23), and has also sign−1. This corresponds to an anti-clockwise orientation on

42 if looked at from the origin0∈ R3, whereas the standard orientation induced by

the unit vectors yields a clockwise orientation.

One can also define an orientationrelative to a pointvp ∈ Rm. Let (v1, . . . ,vm) be

an orderedm-tuple of vectors inRm. Then the orientation is defined by the term

sign detV = sign det
[
v1−vp . . . vm−vp

]
. (1.8)

Expression (1.7) is the same as (1.8) forvp = 0 ∈ Rm. The term (1.8) is+1 or −1

if and only if the vectors inv1, . . . ,vm,vp span anm-simplex. That is,v1, . . . ,vm span
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Figure 1.3: The orientation of a basis
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an(m−1)-simplex such thatvp is not an affine combination of the vectorsv1, . . . ,vm.

The hyperplane defined by the affine combinations of the vectorsv1, . . . ,vm dividesRm

into two halfspaces. If two pointsvp andv′p lie in the same halfspace, the orientation

relative tovp andv′p is the same. If the two points lie in different halfspaces, (1.8)

yields opposite signs.

Let f be a function between two topological spacesS andT. If f is continuous

then f is called amapping. For two mappingsf ,g from a topological spaceS to a

topological spaceT, i.e. f ,g : S→ T, ahomotopyh betweenf andg is a continuous

deformation off intog. A homotopyh can be described as a mappingh : S× [0,1]→T

such thath(x,0) = f (x) andh(x,1) = g(x) for all x∈ S. This is denoted asf 'h g.

1.2 The Lemke-Howson Algorithm

In their seminal work, Lemke and Howson (1964) describe an algorithm for finding at

least one equilibrium in a non-degenerate bimatrix game. This algorithm is referred

to as the Lemke-Howson (L-H) algorithm, and it is the classical algorithm for finding

Nash equilibria in non-degenerate bimatrix games. This section gives a brief review

of the L-H algorithm, since it can be used in the theory of index for non-degenerate

bimatrix games. Detailed reviews of the L-H algorithm can be found in Shapley (1974)

and von Stengel (2002). Shapley (1974), motivated by the L-H algorithm, introduces

the notion of index for non-degenerate bimatrix games. He shows that the equilibria at

the two ends of an L-H path have opposite indices. The L-H algorithm also plays an
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important role in the subsequent chapters where it is translated into a new geometric-

combinatorial construction (see Chapters 2 and 3).

Proposition 1.2 Let G be anm×n bimatrix game (not necessarily non-degenerate).

Then(x,y) ∈ X×Y is a Nash equilibrium ofG if and only ifL(x)∪L(y) = I ∪J.

Proof. This follows from the fact that in an equilibrium a pure strategy is a best reply

strategy or is played with zero probability. If the game is degenerate, both might be

the case. In any case, the conditionL(x)∪L(y) = I ∪J ensures that only the best reply

strategies are played with non-zero probability.

If a game is non-degenerate, an equilibrium strategyx plays a pure strategy with

positive probability if and only if it is a best reply strategy againsty, and vice versa.

So in equilibriumL(x)∪ L(y) = I ∪ J and L(x)∩ L(y) = /0. A pair (x,y) such that

L(x)∪L(y) = I ∪J is calledcompletely labelled.

The fact that an equilibrium strategyx plays a pure strategy with positive probabil-

ity if and only if it is a best reply strategy againsty (and vice versa) builds the basis

for the L-H algorithm. The L-H algorithm describes a path in the product spaceX×Y

along which the points are almost completely labelled with a fixed missing label. A

pair (x,y) is said to bealmost completely labelledif L(x)∪L(y) = I ∪J−{k} for some

k∈ I ∪J. The endpoints of a path are fully labelled and hence equilibria of the game.

In order to obtain a starting point for the L-H algorithm one extendsX andY with the

points0∈Rm and0∈Rn. These zero vectors can be seen as artificial strategies where

the probability on each pure strategy is zero, i.e. no strategy is played. The pair(0,0)

is then completely labelled.

The following description of the L-H algorithm follows that given by Shapley

(1974). LetX0 denote the boundary of them-simplex spanned by0∈Rm andei ∈Rm,

i ∈ I . So X0 consists of a union of(m− 1)-faces, where one(m− 1)-face ofX0 is

given byX. The other(m−1)-faces ofX0 are spanned by vertices0∈Rm andei ∈Rm,

i ∈ I−{k}. Accordingly, the setY0 is defined as the boundary of then-simplex spanned

by 0∈ Rn andej−m∈ Rn, j ∈ J. The(n−1)-face ofY0 that is spanned byej−m∈ Rn,

j ∈ J, representsY. The other(n−1)-faces ofY0 are spanned by vertices0∈ Rn and

ej−m∈Rm, j ∈ J−{l}. Forx∈ X0, the labelsL(x) are defined asI(x)∪J(x) for x∈ X
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and as{i ∈ I | xi = 0} otherwise. Fory∈Y0, the labelsL(y) are defined asI(y)∪J(y) for

y∈Y and as{ j ∈ J | y j−m = 0} otherwise. The vertices inX0 are the points withm la-

bels, and the vertices inY0 are the points withn labels. So0∈Rm is a vertex inX0 with

labelsI and0 ∈ Rn is a vertex inY0 with labelsJ. The vertex pair(0,0) ∈ Rm×Rn

is completely labelled, and it is referred to as theartificial equilibrium. For subsets

K,K′ ⊂ I ∪J, let

X0(K) = {x∈ X0 | K ⊂ L(x)} , Y0(K′) =
{

y∈Y0 | K′ ⊂ L(y)
}

.

X0 is a graph whose vertices are points withm labels, and whose edges are described

by m−1 labels. Similarly, the setY0 is a graph whose vertices are points withn labels,

and whose edges are described byn−1 labels. Depictions ofX0 andY0 for the game

in (1.6) are given in Figure 1.4.

Figure 1.4: The L-H algorithm for the game in (1.6)
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Now fix a labelk ∈ I ∪ J and consider the subset of labelsI ∪ J−{k}. The idea

of the L-H algorithm is to follow a unique path of almost completely labelled points

with labelsI ∪ J−{k} in the product graphX0×Y0. As a starting point, one chooses

a completely labelled pair of vertices(x,y) in X0×Y0, so one can either start at an

equilibrium or the artificial equilibrium. Each path with labelsI ∪ J−{k} lies in the

set

M(k) = {(x,y) ∈ X0×Y0 | I ∪J−{k} ⊂ L(x)∪L(y)}. (1.9)

At the end of each path one finds another completely labelled pair of vertices, i.e. an

equilibrium. The paths of almost completely labelled points are referred to asL-H

paths. The following theorem and proof can also be found in von Stengel (2002).
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Theorem 1.3 (Lemke and Howson, 1964; Shapley, 1974)LetGbe a non-degenerate

bimatrix game andk be a label inI ∪J. ThenM(k) as in (1.9) consists of disjoint paths

and cycles in the product graphX0×Y0. The endpoints of the paths are the equilibria

of the game and the artificial equilibrium(0,0). The number of equilibria is odd.

Proof. Let (x,y) ∈M(k). Thenx andy have together eitherm+n or m+n−1 labels.

In the former case, the tuple(x,y) is either an equilibrium or the artificial equilibrium.

In the latter case, one hasL(x)∪L(y) = I ∪J−{k}, and there are the following three

possibilities:

a) |L(x)| = m andy hasn−1 labels. Thenx is a vertex inX0, andy lies on some

edgee(y) in Y0. So{x}×e(y) is an edge inX0×Y0.

b) x hasm−1 labels and is part of an edgee(x) in X0, while y hasn labels and is a

vertex inY0. Thene(x)×{y} is an edge inX0×Y0.

c) x hasm labels andy hasn labels. So(x,y) is a vertex in the product graphX0×Y0.

Therefore, the setM(k) defines a subgraph ofX0×Y0. If (x,y) is completely labelled,

then the vertex(x,y) is incident to a unique edge in the subgraphM(k), namely{x}×
Y0(L(y)−{k}) if k ∈ L(y) or X0(L(x)−{k})×{y} if k ∈ L(x). In case c), one has

L(x)∪L(y) = I ∪ J−{k}, so there must be a duplicate label inL(x)∩L(y). But this

means that(x,y) is incident to both edges{x}×Y0(L(y)−{k}) andX0(L(x)−{k})×
{y}. Therefore, the setM(k) is a subgraph where all vertices are incident to one or two

edges. Hence, the subgraphM(k) consists of paths and cycles. The endpoints of the

paths are the equilibria and the artificial equilibrium. Since the number of the endpoints

is even, the number of equilibria is odd (not counting the artificial equilibrium).

The L-H algorithm can be illustrated by the game in (1.6). This is depicted in

Figure 1.4. One starts in the completely labelled artificial equilibrium(0,0). Now

choose a label to drop, say label1 of player I. This determines an edge inX0 along

which the points have labels2,3. At the other end of this edge one finds a vertex

v∈ X0 with labels2,3,5. The vertex pair(v,0) has labels2,3,5 and4,5,6, so5 is a

duplicate label. This determines an edge inY0 with labels4,6 leading to the vertexw

with labels3,4,6. So the vertex pair(v,w) has the duplicate label3, and one follows
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the edge inX0 that is given by labels2,5, leading tov′ with labels2,4,5. Now (v′,w)

has duplicate label4. This yields an edge inY0 defined by labels6,3, leading tow′

with labels6,1,3. The pair(v′,w′) is completely labelled and hence an equilibrium of

the game in (1.6).

1.3 Index Theory

For non-degenerate bimatrix games, the index for equilibria was first introduced by

Shapley (1974). Shapley’s index theory is motivated by the L-H algorithm, and Shap-

ley shows that equilibria which are connected via an L-H path have opposite indices.

Formally, let(x,y) be an equilibrium of a non-degenerate bimatrix game with pay-

off matricesA andB. Let A′ andB′ denote the square sub-matrices obtained fromA

andB by deleting those rows and columns that correspond to pure strategies played

with zero probability inx andy. So

A′ = [Ai j ]i∈supp(x)∧ j∈supp(y), B′ = [Bi j ]i∈supp(x)∧ j∈supp(y) (1.10)

are the payoff matrices restricted to the support ofx andy. Without loss of generality

it can be assumed that all entries ofA andB are (strictly) greater than zero. This is

possible since adding a positive constant to the entries ofA or B does not affect the

equilibria of the game.

Definition 1.4 (Shapley, 1974)The index of an equilibrium(x,y) of a non-degenerate

bimatrix game with payoff matricesA andB is given as the negative of the sign of the

determinant of the following index matrix obtained fromA andB:

I(x,y) =−sign det


 0 B′

(A′)> 0


 .

Using basic laws for the calculation of the determinant, this expression simplifies to

I(x,y) = sign(−1)k+1det(A′)>detB′, wherek is the size of the support ofx andy.

Remark 1.5 Shapley (1974) defines the index as

sign det


 0 B′

(A′)> 0


 ,
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i.e. Definition 1.4 is the negative of the original definition, for the following reasons.

Definition 1.4 is consistent with the generalisation of the index for components of equi-

libria. Furthermore, according to Definition 1.4, pure strategy equilibria and equilib-

ria that are the unique equilibrium of a game have index+1.

Shapley shows that equilibria that are connected via an L-H path have opposite

indices and that the sum of indices of equilibria of a game equals+1 (using the index

as in Definition 1.4). In Shapley’s original work, the proof of this claim is not very

intuitive. A more intuitive approach can be found in Savani and von Stengel (2004).

Basically, it employs the fact that along a path withm+n−1 labels that connects two

completely labelled vertices the “relative position” of the labels stays constant. This is

illustrated in Figure 1.5. The two fully labelled points are connected via a path with

labels2,3, where2 is always on the left of the path and3 on the right (and the non-

missing labels have a similar fixed orientation in higher dimension). The fully labelled

vertex on the left reads1,2,3 in clockwise orientation, and the fully labelled vertex

on the right reads1,2,3 in anti-clockwise orientation. In this sense the index is an

orientation of the labels around a fully labelled vertex.

Figure 1.5: Equilibria at the ends of L-H paths have opposite indices
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To apply this concept of orientation to bimatrix games, Savani and von Stengel

first consider symmetric games. In symmetric games, the L-H paths can be followed

in the strategy space of just one player, say player I, by replacing the labels of player II

in X by the corresponding best reply labels of player I in the division ofY. Then

the Nash equilibria of a symmetric game correspond to vertices inX that have labels

1, · · · ,m. For the3×3 coordination game, this is depicted in Figure 1.6. But every non-

symmetric game with payoff matricesA andB can be symmetrised by constructing the
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game with payoff matrices

C =


 0 A

B> 0


 , C> =


 0 B

A> 0


 ,

again assuming that all payoffs ofA andB are strictly greater than 0. Then the equi-

libria of the game with matricesC andC> correspond to the equilibria of the orig-

inal game by restricting the solutions of the symmetrised game toX andY, and re-

normalising the probabilities.

Figure 1.6: The index in the coordination game
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In non-degenerate games, the Nash equilibria are singletons in the product space

X×Y. For degenerate games one has to consider sets of equilibria inX×Y. Kohlberg

and Mertens (1986, Proposition 1) show that the set of Nash equilibria of any finite

game has finitely many connected components. A maximally connected set of Nash

equilibria is referred to as acomponent of equilibria. The index of a component of

equilibria of a game is an integer that is computed as the local degree of a map for

which the Nash equilibria of the game are the zeros. Loosely speaking, the local de-

gree of a map counts the number of cycles (in higher dimension spheres) around zero

obtained by the image of a cycle (in higher dimension sphere) around the component

(see e.g. Dold (1972, IV, 4)). The Nash equilibria of a game can be described as the

fixed points of a mappingf : X×Y → X×Y (see e.g. Nash (1951) or Gül, Pearce

and Stacchetti (1993) for such mappings). Such maps are calledNash maps. Defining

F = f − Id yields aNash fieldwhose zeros are the Nash equilibria of a game. The

index is independent of the particular map used (see Govindan and Wilson (1997b),

for bimatrix games, and, for games with any number of players, Demichelis and Ger-

mano (2000)). For generic bimatrix games it is the same as the index in Definition 1.4
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(Govindan and Wilson (1997b)). An introduction to the concept of index for compo-

nents of equilibria can be found in Ritzberger (2002, 6.5).

Using the Kohlberg-Mertens (K-M) structure theorem (Kohlberg and Mertens (1986,

Theorem 1)), the index can also be expressed as the local degree of the projection map

from the equilibrium correspondence to the space of games (see Govindan and Wilson

(1997a), for bimatrix games, and, for games with any number of players, Demichelis

and Germano (2000)). This can be illustrated using the following parameterised game.

G(t) =


1− t,1− t 0,0

0,0 t, t


 (1.11)

In this example, the gamesG(t) are parameterised byt ∈ R. Figure 1.7 shows that the

equilibrium correspondenceE(G(·))⊂ G(·)× (X×Y) overG(·) is homeomorphic to

G(·) itself. In Figure 1.7,p denotes the probability for the first strategy of player I in

equilibrium. If player I plays(p,1− p) ∈ X in an equilibrium, then player II’s strategy

in that equilibrium is also(p,1− p) ∈Y, wherep = t gives the mixed equilibrium of

the game when0 < t < 1.

Figure 1.7: The K-M structure theorem
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In general, letΓ denote the space of games for a fixed number of players with a

fixed number of strategies. ThenΓ can be parameterised byRk, wherek equals the

number of players multiplied by the product of the numbers of pure strategies per

player. LetΣ denote the product space of mixed strategy spaces. Then the equilibrium

correspondence overΓ is defined as

E(Γ) = {(G,σ) ∈ Γ×Σ | σ is an equilibrium ofG} .

The K-M structure theorem states that the space of gamesΓ is homeomorphic toE(Γ)

(after a one-point compactification). In general, the K-M structure theorem does not
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apply to restrictions of the space of gamesΓ as in (1.11). If, for example, one re-

strictsΓ to a single point that represents a game with more than one component of

equilibria, the space of games, i.e. the single point, is not homeomorphic to the graph

of the equilibrium correspondence, which consists of several disjoint sets of equilibria.

Nevertheless, (1.11) gives a good illustration of the K-M structure theorem.

For the illustration in Figure 1.7, the local degree of the projection map fromE(Γ)

on Γ measures, loosely speaking, the local orientation of the equilibrium correspon-

dence relative to the orientation ofΓ. In the example, all completely mixed equilibria

have index−1. The pure equilibria in the non-degenerate games (i.e.t 6∈ {0,1}) have

index+1. The corners of the Z-shaped correspondence are those pure strategy equi-

libria in the degenerate games (t ∈ {0,1}) which disappear or split into two equilibria

with opposite indices for small perturbations. These have index 0.

The index for components and for singletons in the non-degenerate case has useful

properties that are employed in the next section to construct components of arbitrary

index.

1) For the non-degenerate case, the index defined as the local degree is the same as

the index defined in Definition 1.4 (Govindan and Wilson (1997b)).

2) The sum of indices of components of equilibria for a fixed game equals+1 (see

e.g. Govindan and Wilson (1997a)).

3) For sufficiently small generic perturbations of a degenerate game, the index of a

component equals the sum of indices of equilibria in the perturbed game close

to the component (see e.g. Govindan and Wilson (1997a;b) for a discussion).

This fact is illustrated in Figure 1.7. Take the pure strategy equilibrium in the

degenerate caset = 1 that has index 0. If the game is perturbed “to the right”

(t +ε) the equilibrium vanishes, if it is perturbed “to the left” (t−ε) it splits into

two equilibria close to it, one with index−1 and one with index+1.

4) The index of a component is the same in all equivalent games (Govindan and

Wilson (1997a, Theorem 2; 2004, Theorem A.3)), i.e. it is invariant under adding

convex combinations of existing strategies with the respective payoffs as new

pure strategies.
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An equilibrium component is said to beessentialif every small perturbation of the

game yields a perturbed game that has equilibria close to the component. It follows that

an equilibrium component with non-zero index is essential. An equilibrium component

is said to behyperessentialif it is essential in all equivalent games. Therefore an

equilibrium component with non-zero index is also hyperessential. Chapter 6 reviews

the concept of (hyper)essentiality in more detail. It addresses the question whether and

under what circumstances the converse is also true, i.e. whether (hyper)essentiality

implies non-zero index.

1.4 Construction of Equilibrium Components with Ar-

bitrary Index

In this section it is shown how games with equilibrium components of arbitrary index

can be constructed. This new result is based on a construction that uses outside op-

tions in bimatrix games. The construction is similar to the one used in Govindan, von

Schemde and von Stengel (2003), where the authors construct symmetric components

of arbitrary index in order to show thatq-stability violates a notion of symmetry. A

great part of the following description is borrowed from this paper.

First, consider a2×2 coordination game, say

H2 =


10,10 0,0

0,0 10,10




(in agreement with the notation in (1.16) below). This game has two pure strategy

equilibria, and one mixed equilibrium, where both players play the mixed strategy

(1
2, 1

2). The index of any of these equilibria is easily determined by the following two

properties, which hold for any game: A pure strategy equilibrium which isstrict (that

is, all unplayed pure strategies have a payoff that is strictly lower than the equilibrium

payoff) has index+1; The sum over all equilibria of their indices is+1. Therefore, the

mixed equilibrium inH2 has index−1. This can also be verified using Definition 1.4.
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Next, anoutside optioncalledOut is added to the set of pure strategies of player II,

say, giving the game

G− =


10,10 0,0 0,9

0,0 10,10 0,9


 . (1.12)

An outside option can be thought of as an initial move that a player can make which

terminates further play, and gives a constant payoff to both players. If the player has

not chosen his outside option, the original game is played. The outside option payoff

above is 9 for player II. This has the effect that an equilibrium of the original game with

payoff less than 9 for player II disappears, in this case the mixed strategy equilibrium.

Geometrically, one can consider the upper envelope, i.e. the maximum of the expected

payoffs for the pure strategies of player II, as functions of the mixed strategy played

by player I as described in Section 1.1. Any equilibrium strategy of player I, together

with its payoff to player II, is on that upper envelope. The outside option gives an

additional constant function that “cuts off” any former equilibrium payoffs below it.

This is depicted in Figure 1.8. It shows the upper envelope of the expected payoffs

for pure strategies of player II and the resulting division of player I’s strategy spaceX

before and after addingOut to player II’s strategy space.

Figure 1.8: Division ofX before and after adding an outside option
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In gameG−, the original pure strategy equilibria ofH2 are unaffected, and continue

to have index+1. Any such equilibrium, as long as it remains (quasi-)strict after in-

troducing the outside option, keeps its index, as the index of a strict equilibrium can be

defined in terms of the payoff sub-matrices corresponding to the pure best replies (see

Definition 1.4). The mixed strategy equilibrium ofH2 is absorbed into an equilibrium

componentwhere player II plays his last strategyOut. The original mixed equilibrium

strategy(1
2, 1

2) of player I is part of the outside option component, which is given by
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the set of mixed strategies of player I so thatOut is a best response. InG− above, it is

easy to see that these are all mixed strategies of player I where each pure strategy has

probability at most9/10. In general, the outside option component is defined by a set

of linear inequalities, one for each pure strategy of the player who playsOut.

Let G be some game with an outside option. Then the outside option equilibrium

component of the gameG by is denoted byC(G). In (1.12), the index ofC(G−) is

−1, which is simply the sum of the indices of all equilibria of the original gameH2

that have been absorbed into the outside option component, because the sum of all

indices is+1. As described in Section 1.3, the index of an equilibrium component also

equals the sum of indices of equilibria near the component when payoffs are perturbed

generically; this sum does not depend on the perturbation.

It is well-known that the best response structure of a bimatrix game remains un-

changed when adding a constant to any column of the payoffs to the row player, or

a constant to a row of the column player’s payoffs. This will allow to cut off pure

strategy equilibria rather than mixed equilibria by using an outside option. Start with

a2×2 coordination game with payoffs1,1 on and0,0 off the main diagonal, and add

the constant 12 to the first column of player I and row of player II, and 7 to the second

column respectively row. The resulting gameH and a corresponding outside option

gameG are given by

H =


13,13 7,12

12,7 8,8


 , G =


13,13 7,12 0,9

12,7 8,8 0,9


 .

The gameH has two pure equilibria with payoffs13,13and8,8, respectively, and one

mixed equilibrium where both play(1
2, 1

2) with payoffs10,10. The outside option with

payoff 9 for player II cuts off the pure strategy equilibrium with payoffs8,8 but leaves

the other equilibria intact. Consequently, the componentC(G) has index+1.

Next, one can “destroy” the pure strategy equilibrium inG by adding another row

to the game. Consider the games

H ′ =




13,13 7,12

12,7 8,8

14,1 1,2


 , G′ =




13,13 7,12 0,9

12,7 8,8 0,9

14,1 1,2 0,9


 .
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Compared toH, the pure strategy equilibrium with payoffs13,13 is no longer present

in H ′. It is replaced by another, mixed equilibrium where player II plays(6
7, 1

7) and

player I plays(1
2,0, 1

2), with payoffs7 to player II and85/7 to player I. This new

mixed equilibrium has index+1. Since the payoff to player II in that equilibrium is

less than the outside option payoff 9, that equilibrium disappears inG′. Consequently,

the componentC(G′) has index+2, because the only equilibrium that is not cut off has

index−1.

Finally, consider the following gameH−, which is a symmetrised version ofH ′:

H− =




13,13 7,12 1,14

12,7 8,8 2,1

14,1 1,2 1,1


 . (1.13)

In this game, the mixed strategy equilibrium where both players play(1
2, 1

2,0) is the

equilibrium with the highest payoff, yielding10for both players. This equilibrium has

index−1. The other equilibria are as follows: The mixed strategy(1
2,0, 1

2) of player I,

which together with(6
7, 1

7) of player I forms an equilibrium ofH ′, is no longer part

of an equilibrium as the third strategy of player II inH− gives a higher payoff. By

playing that strategy as well, one obtains acompletely mixedequilibrium where both

players play(1
2, 1

12,
5
12), with resulting payoff15/2 to both players. This equilibrium

has index+1, as has the pure strategy equilibrium with payoffs8,8. There are no other

equilibria ofH−.

H− is used for constructing components with arbitrarily high positive index. For

k > 1, let H−k be the game consisting ofk copies of the gameH− on the diagonal and

zeros everywhere else, that is,

H−k =




H− 0,0 · · · 0,0

0,0 H− 0,0
...

...
...

0,0 0,0 · · · H−




︸ ︷︷ ︸
k copies

. (1.14)

Each player has3k strategies inH−k. For any nonempty set of thek copies ofH−,

and any equilibrium in such a copy, one obtains an additional equilibrium ofH−k by

suitable probability weights assigned to the copies. All such mixtures involving more
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than one copy, however, give payoffs less than8. There are no other equilibria ofH−k

as the payoffs in a copy ofH− are all positive, and the other payoffs are zero.

The superscript inH−k indicates the sum of indices of those equilibria that are not

cut off by adding a suitable outside option. The outside option is, as before, added to

player II’s strategy space, and is also referred to asOut as an additional pure strategy.

This gives the game

Gk+1 =




0,9

H−k ...

0,9


 . (1.15)

The gameGk+1 hask+ 1 equilibrium components: thek mixed strategy equilibria

where both players play strategies 1 and 2 in one copy ofH− with probability 1
2 (yield-

ing a payoff of10for both), and the equilibrium component in which player II chooses

the last strategy, the outside optionOut. That componentC(Gk+1) is given by those

strategy pairs where player II playsOut, and player I playing such thatOut is a best

response. All isolated equilibria have index−1. Since the indices of all equilibrium

components have to add up to one, the outside option equilibrium componentC(Gk+1)

has indexk+ 1, which is chosen as a superscript forG in (1.15). Therefore, for each

positive integerq, the gameGq in (1.15) has a component with indexq; this includes

the trivial caseq = 1 andk = 0, which is a1×1 game.

The division of player I’s mixed strategy spaceX for the gameG2 is depicted in

Figure 1.9. It shows that, except for the equilibrium vertex(1
2, 1

2,0) ∈ X, all other

vertices that are part of an equilibrium inH− are cut off by the outside option.

Figure 1.9: The division ofX for the gameG2 with outside option
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A similar, simpler construction gives equilibrium components with arbitrary nega-

tive index. Fork > 2, let Hk be the followingk×k game:

Hk =




10,10 0,0 · · · 0,0

0,0 10,10 0,0
...

...
...

0,0 0,0 · · · 10,10




︸ ︷︷ ︸
k columns

(1.16)

Just as (1.15) is obtained from (1.14), one can add an outside option for player II, and

obtain

G−(k−1) =




0,9

Hk ...

0,9


 (k > 2). (1.17)

The equilibria of gameG−(k−1) are thek pure strategy equilibria of the coordination

game, yielding a payoff of 10 for both players, and the outside option equilibrium com-

ponentC(G−(k−1)) (see Figure 1.8 for the casek = 2). Since pure strategy equilibria

have index+1, it follows thatC(G−(k−1)) has index−(k−1).

Hence, for each negative integerq, there exists a game that has an equilibrium

component with indexq. The casek= 1 gives an empty equilibrium component (which

can be thought of as having index 0), since in this case the first strategy by player II

strictly dominatesOut. Therefore it is required thatk > 2 in (1.17).

From the above, one can now easily construct a game with a non-trivial equilibrium

component that has index 0. This is done by combining the gamesHk andH−(k−1) in a

new game by placing them on the diagonal, and adding an outside option for player II

as before. The casek = 2 is sufficient, so letG0 be the following5×6 game:

G0 =


H2 0 0,9

0 H− 0,9


 . (1.18)

As argued after (1.14), the only equilibria inG0 that are not cut off are those with pay-

offs 10,10 in H2 or H−. Thus, by a counting argument, the outside option equilibrium

componentC(G0) has index 0. The constructions prove the following proposition.

Proposition 1.6 For each integerq, there exists a (bimatrix) game that has a compo-

nent of equilibria with indexq.
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In general, index 0 components are easy to construct (see alsok = 1 in (1.17) for

the trivial case). Consider for example the game

1,1 0,0

0,0 0,0


 .

This game is the same asG(0) in (1.11) and has two pure strategy equilibria, one with

payoff 1 and the other one with payoff 0. It is easy to verify that the equilibrium with

payoff 1 has index+1. It “survives” every small payoff perturbation. The pure strategy

equilibrium with payoff 0 has index zero. The payoffs can be perturbed such that this

equilibrium either vanishes or splits into two equilibria with opposite indices (see also

Figure 1.7). The reason for providingG0 as in (1.18) is that a similar construction is

used in Govindan et al. (2003) in order to show that0-stable sets violate a notion of

symmetry. Furthermore, in Chapter 6 it is shown that the outside option equilibrium

component of the gameG0 is essential in all equivalent games that do not contain a

duplicate ofOut. However, it is not hyperessential when allowing copies ofOut.
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Chapter 2

A Reformulation of the Index for

Equilibria in Bimatrix Games

This chapter introduces a new geometric-combinatorial construction for non-degenerate

bimatrix games that allows one to give a new characterisation of Nash equilibria and

index in bimatrix games. Given anm× n non-degenerate bimatrix game (assuming

m≤ n without loss of generality), the construction yields a division of an(m− 1)-

simplex in which the Nash equilibria and the index can be characterised by the labels

of player I only. So, for example, any3× n bimatrix game can be represented by a

division of a2-dimensional simplex using only labels1,2,3.

The new construction, which is referred to as thedual construction, allows an

intuitive definition of an orientation (or index) for equilibria in bimatrix games. It

is shown that the notion of orientation introduced here is the same as the notion of

index introduced by Shapley (1974) (modulo the sign in the definition as explained in

Remark 1.5). It is also shown that the L-H algorithm by Lemke and Howson (1964)

that finds an equilibrium in a non-degenerate bimatrix game can be interpreted as a

path-following algorithm in the dual construction. This allows one to visualise, in

dimension3 or lower, both the index and the L-H paths for allm×n non-degenerate

bimatrix games withmin{m,n} ≤ 4, whereas the interpretation of L-H paths and the

definition of index by Shapley, or the interpretation by Savani and von Stengel (2004)

by symmetrising games (see Section 1.3), uses geometric objects in dimensionm+
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n−2. Furthermore, it illustrates how non-degenerate bimatrix games fit into the study

of solutions of piecewise linear equations as in Eaves and Scarf (1976).

This chapter is basic for the results in the subsequent chapters. Later, Chapter 3

shows how the results of this chapter are related to Sperner’s Lemma in dimension

(m−1). In Chapter 4, the construction is used to give a strategic characterisation of

the index in non-degenerate bimatrix games. Chapter 5 shows how the dual construc-

tion can be extended to outside option equilibrium components, which is applied in

Chapter 6 to show that an outside option equilibrium component is hyperessential if

and only if it has non-zero index.

The structure of this chapter is as follows. In Section 2.1 the dual construction is

introduced and described in detail. Section 2.2 gives a characterisation of the Nash

equilibria in the dual construction. Using only labels of player I, it is shown that the

Nash equilibria are given by the fully labelled points in the dual construction (Proposi-

tion 2.6). Section 2.3 re-interprets the Lemke-Howson (L-H) algorithm and shows that

it yields a connected path in the dual construction (Proposition 2.7 and Lemma 2.8).

Finally, in Section 2.4, a notion of orientation for Nash equilibria is given. It is shown

that it is equivalent to the notion of index defined by Shapley (Proposition 2.10).

2.1 The Dual Construction

This section describes a new geometric-combinatorial construction for non-degenerate

bimatrix games. Put briefly, the subdivided strategy simplexX is dualised to obtain a

dual space|X4|. Vertices inX become simplices in|X4|, and best reply regions inX

become vertices in|X4|. There are two equivalent ways of constructing|X4|. One

uses polar polytopes, the other one is a combinatorial dualisation method. Into|X4|
one then inscribes those faces ofY that are of strategic relevance for the game, yielding

a divisionX4∗ of the dual space into labelled best reply regions for player I. The final

construction has the same dimension asX and uses only labels of player I. The division

into simplices reflects the best reply structure for player II, the division of the simplices

into labelled best reply regions reflects the best reply structure for player I. Combining
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these two, the Nash equilibria are represented by completely labelled points in the dual

construction.

The dual construction|X4| can be obtained by using a polarisation method for

polytopes (see e.g. Ziegler (1995, Section 2.3)). A combinatorial dualisation method

is described further below. In brief, when polarising a polytope, vertices become sim-

plices and facets become vertices. The polytope itself is obtained from the best reply

polyhedronH in (1.5) that is given by the upper envelope of player II’s expected pay-

offs overX. The polyhedronH is neither bounded nor full-dimensional. Since full-

dimensional polytopes, i.e. bounded and full-dimensional polyhedra, are more conve-

nient to study, the polyhedronH can be projected in order to obtain a polytopeP that

contains the same information asH and that is full-dimensional and bounded. This de-

scription is similar to von Stengel (2002), which also gives references to related earlier

works.

The polyhedronH as in (1.5) is defined as

H = {(x,v) ∈ Rm×R | 1>mx = 1, B>x≤ 1nv, xi ≥ 0 ∀ i ∈ I}.

Without loss of generality it can be assumed thatv > 0 for all (x,v) ∈ H, since adding

a positive constant to the entries ofB does not affect the equilibria or the best reply

structure of a game. Now consider the set

P′ = {x∈ Rm | B>x≤ 1n xi ≥ 0 ∀ i ∈ I}. (2.1)

The mappingH → P′−{0} is given by(x,v) 7→ 1
v ·x, and the inverseP′−{0}→ H is

given byx 7→
(

x
|x| , |x|

)
, where|x|= 1>mx. The vertex0 of P′ corresponds with “infinity”

overH. The setP′ is described by a finite number of inequalities and is both bounded

and full-dimensional. Hence, the setP′ is anm-dimensional polytope. Geometrically,

the polytopeP′ is the projection of the polyhedronH on the hyperplane described by

v = 1. This is depicted in Figure 2.1.

In order to obtain the polar (or dual) of a polytope of dimensionm, it is convenient

if 0∈Rm lies in the interior of the polytope. This is not the case for the polytopeP′, but

can easily be obtained by translating the polytopeP′ to obtain the desired polytopeP.

Consider the point
( 1

m, . . . , 1
m, v̂

)∈H with v̂= maxi, jbi j +c, wherec is some arbitrarily

large positive constant. The projection of this point is given byx̂ =
( 1

mv̂, . . . ,
1

mv̂

) ∈ P′
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Figure 2.1: The projection of the polyhedronH and the polytopeP
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and lies in the interior ofP′. So one can translateP′ by−x̂ to obtain

P = {x∈ Rm | B>(x+ x̂)≤ 1n; xi + x̂i ≥ 0 ∀ i ∈ I}.

Note that every other point in the interior ofP′ could be used for the translation. Then

0∈Rm lies in the interior ofP. The polytopeP is referred to as thebest reply polytope.

A depiction ofP is given by the dotted lines on the right in Figure 2.1. The inequalities

that describeP can be rewritten to obtain

P =
{

x∈ Rm | v̂

v̂−B j
B>j x≤ 1 ∀ j ∈ N; −mv̂xi ≤ 1 ∀ i ∈ I

}
, (2.2)

whereB j = 1>mB j
m is the average payoff for player II in columnj.

In general, letP be a polytope given by

P =
{

z∈ Rm | c>k z≤ 1, 1≤ k≤ n
}

.

Geometrically, the polytopeP is defined by halfspaces, which are given by hyper-

planes. The vectorsc j ∈ Rm are the normal vectors of these hyperplanes. Thepolar

polytopeP4 of the polytopeP is defined as the convex hull of the normal vectorsck of

the hyperplanes that describeP, i.e.

P4 = conv{c1, . . . ,cn} . (2.3)

One can show that the polar of the polar polytope is the original polytope, i.e.P44 = P

(see e.g. Ziegler (1995, Theorem 2.11)). Note that0∈ Rm lies in the interior ofP, and
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hence in the interior ofP4. A depiction of the polar polytope for a given polytope is

given in Figure 2.2.

Figure 2.2: The dual of a polytope

0

P
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For a non-degenerate bimatrix game, the polytopeP as in (2.2) is simple, i.e. each

vertex of them-dimensional polytopeP is described by exactlym binding linear in-

equalities, so each vertex is contained in exactlym facets ofP. Consequently, the polar

P4 is simplicial (see e.g. Ziegler; Proposition 2.16). Each vertex ofP4 corresponds to

a facet ofP, and each facet ofP4, representing a vertex inP, is an(m−1)-simplex.

The study of polytopes is a very useful tool in the analysis of games. Von Stengel

(1999b), for example, uses cyclic polytopes to construct games in order to obtain a

new lower bound on the maximal number of Nash equilibria in ad×d non-degenerate

bimatrix game. Savani and von Stengel (2004) employ a related method to construct

games in which L-H paths are exponentially long.

The simplicial surface of the polar polytopeP4 can be projected on the facet of

P4 that is given by the(m−1)-simplex spanned by the vertices−mv̂ei , i ∈ I , where

ei denotes the unit vector inRm with entry 1 in row i. The projection is defined by

the intersection of the line between a pointx and(−mv̂)1m with the facet spanned by

−mv̂ei , i ∈ I (see Figure 2.3). This yields a triangulation of the facet spanned by the

vertices−mv̂ei , i ∈ I . A triangulation(or simplicial subdivision) of a simplex is a finite

collection of smaller simplices whose union is the simplex, and that is such that any

two of the simplices intersect in a face common to both, or the intersection is empty.

The vertices of a triangulation are the vertices of the simplices in the triangulation.
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Figure 2.3: The simplicial division ofX4
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Definition 2.1 The simplex spanned by−mv̂ei, i ∈ I , is denoted asX4. The triangula-

tion induced by the projectionP4−X4→ X4 is denoted as|X4|, and referred to as

the dual construction. The facets ofP4 other thanX4, which are(m−1)-simplices,

are denoted asv4. For notational parsimony, their projections onX4, which are also

(m−1)-simplices, are also denoted asv4.

An illustration of|X4| is depicted in Figure 2.3. The vertices−mv̂ei correspond to the

facets ofP that represent unplayed strategies. All other vertices ofP4 correspond to

facets ofP that represent best reply facets ofH. Each vertexv 6= −x̂ of P represents

a vertex ofH, and hence a vertex in the division ofX into best reply regions. So

each vertexv in X or H corresponds to a unique(m− 1)-simplexv4 in |X4| or on

the surface ofP4. The simplexX4 represents the vertex−x̂∈ P, and is spanned by

−mv̂ei , i ∈ I .

The induced triangulation|X4| is regular. A triangulation is calledregular if it

arises as the projection of a polytopeQ whose facets are simplices (see e.g. Ziegler

(1995, Definition 5.3)). The simplices in|X4| are the projections of the facets ofP4.

Essentially, the projection|X4| is a so-calledSchlegel-diagramof P4 that is combi-

natorially equivalent to the complex∂P4−X4 (see e.g. Ziegler (1995, Proposition

5.6.)), where∂P4 denotes the boundary ofP4.

Now suppose one has a regular triangulation|X4| of X4. Assume that the only

vertices of the triangulation that lie on the boundary ofX4 are those that spanX4, i.e.

−mv̂ei , i ∈ I . Then one can obtain a payoff matrixB that induces this subdivision. For
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this, consider the polytopeQ that induces this triangulation. Without loss of generality

it can be assumed that0 ∈ Q. Otherwise the vectors other than−mv̂ei , i ∈ I , can be

moved in the same manner along the projection line. ThenQ is the polar polytope

P4 of a polytopeP. The polytopeP4 is given byconv{c1, . . . ,cn} (see (2.3)), where

the firstm vectors are given by−mv̂ei , i ∈ I (these are the vertices ofX4). Given a

polytopeP4, the following lemma shows how one can construct the corresponding

payoff matrixB that yieldsP4 as the polar of the polytopeP given in (2.2).

Lemma 2.2 ConsiderP4 as in (2.3) with0∈ P4, and let the firstm vectors be given

by ci = −mv̂ei , i ∈ I . For all other c j , j > m, let (c j)i > −mv̂ ∀ i ∈ I , where(c j)i

denotes thei-th row ofc j , and letc j > −v̂, wherec j = 1>mc j
m . ThenP4 is the polar of

the polytope in (2.2) with

B j =
v̂

v̂+c j
c j . (2.4)

Proof. By definition, one has v̂
v̂−B j

B j = c j for all j > m. This implies that v̂
v̂−B j

B j = c j ,

soB j = v̂
v̂+c j

c j . Substituting this intoB j =
(

v̂−B j
v̂

)
c j yieldsB j = v̂

v̂+c j
c j . Note that the

first m vectors areci =−mv̂ei , i ∈ I , and give the inequalities−mv̂xi ≤ 1 in (2.2).

TranslatingP as in (2.2) by( 1
mv̂, . . . ,

1
mv̂) gives the polytopeP′ as in (2.1) with

( 1
mv̂, . . . ,

1
mv̂) lying in the interior ofP′. FromP′−{0} one obtainsH via x 7→

(
x
|x| , |x|

)
.

So the upper envelopeH satisfiesv > 0 for all (x,v) ∈ H, and( 1
m, . . . , 1

m, v̂) lies in the

relative interior ofH with v̂ > B j ∀ j ∈ N.

The above construction shows that each strategy simplexX can be dualised in a

way such that one obtains a regular triangulation|X4| of an (m− 1)-simplex. This

construction is such that the vertices ofX correspond to the simplices in|X4|, and

the best reply regions and unplayed strategies inX correspond to vertices in|X4|.
Furthermore, an edge inX that connects verticesv1 andv2 in X corresponds to the

common(m−2)-face of the two adjacent(m−1)-simplicesv41 andv42 in |X4|.

The important aspects of|X4| are the combinatorial properties of the simplices and

vertices in|X4|. A combinatorial equivalent of|X4|, which, for notational parsimony,

is also referred to as|X4|, can be obtained without using the polarisation method from

above. Instead, it can be derived directly from the division ofX into best reply regions.

To illustrate the procedure, it is applied to the following example.
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Example 2.3 


0,0 10,10 0,0 10,−10

10,0 0,0 0,10 0,8

8,10 0,0 10,0 8,8


 (2.5)

Take player I’s standard(m− 1)-simplex representing the mixed strategy spaceX.

ThenX can be divided into best reply regionsX( j). Non-degeneracy implies that the

number of best replies in a vertexv∈ X equals the number of strategies played with

positive probability inv. Figure 2.4 gives the division ofX into best reply regions for

player II for the game in Example 2.3. It shows that every vertexv∈ X has exactlym

labels, where the labels of a vertexv∈ X are the pure best reply strategies of player II

with respect tov and the pure strategies of player I not played inv. The labels of a

pointx∈ X are given byL(x) as defined in (1.3).

Figure 2.4: The best-reply division ofX for the game in Example 2.3
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A combinatorial dualisation ofX is now obtained as follows. For each best reply

region and each unplayed strategy, one chooses a representative point inRm−1 that

serves as a vertex in|X4|. For best reply regions, these representatives are denoted as

X( j)4. For an unplayed strategyi ∈ I the representatives are denoted asX(i)4.

The pointsX(k)4, for k ∈ I ∪ J, that are corresponding to best reply regions or

unplayed strategies, now become the vertices in the dual ofX, so each such vertex has

label k. For every vertexv ∈ X with labelsL(v), the combinatorial dual simplexv4

is the simplex spanned by the dual verticesX(k)4, with k∈ L(v). For two verticesv1

andv2 that are joined by an edge with labelsL(v1)∩L(v2) in X, the two combinatorial
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simplicesv41 andv42 are adjacent and share the(m− 2)-face that is spanned by the

dual vertices representing the labelsL(v1)∩L(v2) in X4.

For the game in Example 2.3, the triangulation|X4| is illustrated in Figure 2.5.

The dotted lines in Figure 2.5 show the division ofX into best reply regions. The

solid lines illustrate|X4|. The best reply regions inX and those labels that represent

unplayed strategies become dual vertices in|X4|. Each vertex inX is represented by a

unique(m−1)-simplex in|X4|. The edges inX become(m−2)-faces of two adjacent

simplices in|X4|.

Figure 2.5: The triangulation ofX4 for Example 2.3
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If a vertex of a simplexv4 is of the formX(i)4, for somei ∈ I , it is called anouter

vertexof v4. Outer vertices ofv4 represent those strategies of player I that are played

with zero probability inv. The (m−1)-simplexX4 is spanned by all outer vertices

X(i)4, i ∈ I . Accordingly, theinner verticesof a simplexv4 are of the formX( j)4,

for some j ∈ J. The inner vertices of a simplexv4 represent best reply strategies of

player II. All simplicesv4 have at least one inner vertex, simplices representing a pure

strategy of player I have exactly one inner vertex.
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2.2 Labelling and Characterisation of Nash Equilibria

The aim is now to divide the simplexX4 into regions with labelsi ∈ I such that the

Nash equilibria are represented by fully labelled points. As above, it can be assumed

that all entries of the payoff matrixA are strictly greater than zero. Now consider

a simplexv4 ∈ |X4|. An inner vertex that represents the pure strategy ofj ∈ N of

player II has the corresponding payoff columnA j . The outer vertices do not represent

payoff columns ofA and are dealt with by introducing slack variables. Each outer

vertex that represents a pure strategyi ∈ I of player I played with zero probability is

assigned anartificial payoff vectorei , i.e. the unit vector inRm with entry1 in row i.

So supposeI(v) = {i1, . . . , ik}, sov4 is spanned by outer verticesX(i1)4, . . . ,X(ik)4

and some inner verticesX( jk+1)4, . . . ,X( jm)4. The payoffs for player I with respect

to pure strategiesjk+1, . . . , jm are given by the columnsA jk+1, . . . ,A jm of the payoff

matrix A. The artificial payoffs for player I with respect to the unplayed strategies

i1, . . . , ik are defined asei1, . . . ,eik. Let A(v) be the followingartificial payoff matrix,

A(v) =
[
ei1 · · · eik A jk+1 · · ·A jm

]
. (2.6)

This artificial payoff matrix now allows one to divide each simplexv4 into labelled

“best reply” regions with labelsi ∈ I .

Definition 2.4 A point in v4 is denoted asws, described by its convex coordinates

with respect to the vertices ofv4 (the subscript “s” indicates thatws contains slack

variables).

Then every simplexv4 can be divided into labelled regions according to

v4(i) = {ws∈ v4 | (A(v)ws)i ≥ (A(v)ws)k ∀ k∈ I}. (2.7)

This is the same division as the division of player II’s mixed strategy space in the case

A(v) is the payoff matrix of player I in some bimatrix game.

Dividing each simplexv4 in |X4|, this gives, by non-degeneracy, a division ofX4

into full-dimensional regionsX4(i) with labels1, . . . ,m, where

X4(i) =
[

v∈V

v4(i).
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Figure 2.6: The labelled dual constructionX4∗ for Example 2.3
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This division is well-defined, since, if two simplicesv41 andv42 share some common

face, the induced division on that face is the same in both simplicesv41 andv42 . For

the game in Example 2.3 the resulting division ofX4 is depicted in Figure 2.6.

Definition 2.5 The division ofX4 into labelled regionsX4(i) is referred to as the

labelled dual construction, and is denoted asX4∗ . A pointws ∈ X4∗ is assigned the

labelsI(ws) of those regions that containws, i.e.

I(ws) = {i ∈ I | ws∈ X4(i)}. (2.8)

For each simplexv4, the innerk+1 (for somek≥ 0) vertices ofv4 span somek-

face ofv4. Thisk-face is referred to as thebest reply faceof v4 and is denoted asvbr4.

So the best reply facevbr4 is spanned by exactly those vertices ofv4 that represent

a best reply strategy of player II with respect to strategyv. The best reply facevbr4

corresponds to the face ofY that is spanned by those pure strategies of player II that

are represented as vertices ofvbr4. So eachw∈ vbr4 can be identified with a unique

strategyy∈Y of player II. The division ofv4 into labelled regions also yields a division

of vbr4 into labelled regions. These labelled regions are affine linear transformations

of the division of the face ofY into best reply regions that corresponds tovbr4. It

should be noted that if a pointw lies on the best reply face of a simplexv4, then the

set of labelsI(w) as in (2.8) is the same asI(w) in (1.1).
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The spaceX4∗ together with the labelling function in (2.8) now allows a complete

characterisation of the Nash equilibria of a non-degenerate bimatrix game. Before

proving the main result of this section, it should be noted that all pointsws that lie in

the interior ofX4 and in somev4 can be projected on somew ∈ vbr4 by dropping

those coordinates that are the slack variables associated with artificial payoff vectors

and normalising the resulting vector such that its entries sum to1. So letws∈ v4. Let

the set of outer vertices ofv4 beX(i1)4, . . . ,X(ik)4, and let the set of inner vertices of

v4 beX( jk+1)4, . . . ,X( jm)4. Note that for all simplicesv4, the set of inner vertices

is non-empty. So letws = (ws1, . . . ,wsm), where the firstk entries are the coordinates

with respect to the outer vertices, and the lastm− k entries are the coordinates with

respect to the inner vertices. Then define the projectionp(ws) as

w = p(ws) =





wi = 0 ; 1≤ i ≤ k

wi = wsi
∑m

i=k+1wsi
; k+1≤ i ≤m

(2.9)

The projection pointw = p(ws) ∈ vbr4 can be identified with a unique strategy vector

in Y. For ws on the boundary ofX4∗ , one definesp(ws) = 0 ∈ Rm. This allows the

following characterisation.

Proposition 2.6 A point ws ∈ X4∗ with ws ∈ v4 is completely labelled if and only if

(v, p(ws)) is a Nash equilibrium of the game.

Proof. Let ws be completely labelled withws∈ v4. Then consider the artificial payoff

matrix A(v). A point is, by definition, completely labelled ifA(v)ws = c1m, wherec is

some positive constant. It is easy to verify that the payoffs ofA(v) are non-degenerate,

since the payoffs ofA are non-degenerate. Hencews lies in the interior ofv4. By

construction one hasw = p(ws) ∈ vbr4. It implies thatI(w) = I − I(v), whereI(v) is

as defined in(1.2). Sincew lies on the best reply face ofv4, it means that player II

mixes only those strategies with positive probability inw that are a best reply tov. So,

using(1.1) and(1.2), one has

w∈ vbr4⇐⇒ J(v)∪J(w) = J. (2.10)

This is to say that player II is always in equilibrium when considering points in the

labelled dual construction. But thenI(w) = I − I(v), so I(v)∪ I(w) = I . This means

that(v,w) is completely labelled, and hence an equilibrium.
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Now let (v,w) be a Nash equilibrium. ThenJ(v)∪J(w) = J, sow∈ vbr4. Since it

is a Nash equilibrium, one hasI(v) = I − I(w). SoA(v)w is a vector with maximum

entries in those rows that are strategies played with positive probability inv. Let c

be this maximum entry. Now assign weights to the columns representing unplayed

strategies to obtain a strictly positive vectorsw̃s such thatA(v)w̃s = c1m. Normalising

the vectorw̃s such that the entries add up to one yields the desired vectorws with

I(ws) = I .

For the game in Example 2.3, the labelled dual construction is depicted in Fig-

ure 2.6. For the following description, the coordinates ofws carry a subscript, marking

the payoff vector they apply to. So, for example, the subscripts1,2,3 refer to artificial

payoff vectors, and the subscripts4,5,6,7 refer to payoff columns ofA. The construc-

tion contains three completely labelled points, namelyws = ((8
9)1,( 8

90)4,( 2
90)7) lying

in the simplexv4 representingv = (0, 1
5, 4

5), the pointws
′ = (( 5

11)4,( 5
11)5,( 1

11)6) lying

in the simplex representingv′ = (1
3, 1

3, 1
3), andws

′′ = ((10
21)2,(10

21)3,( 1
21)5) lying in the

simplex representingv′′ = (1,0,0). Projecting these vectors givesw = (4
5,0,0, 1

5), the

point w′ = ( 5
11,

5
11,

1
11,0) andw′′ = (0,1,0,0). So (v,w), (v′,w′) and(v′′,w′′) are the

Nash equilibria of the game.

Instead of labelling the dual construction|X4|, which consists of the projected

simplicial facets of the polar polytopeP4, one can also label the simplicial facets of

P4 directly via the artificial payoff matrix. The division of each simplicial facet ofP4

is obtained in the same way as the division of the projected simplices. The result of

this construction is depicted in Figure 2.7 for the game given by the payoff matrices

A =


1 0 0

0 1 1


 ; B =


6 4 1

1 3 5


 .

The resulting labelled surface of the polar polytope is denoted asP4∗ . Its simplicial

surface is denoted as|P4|. In this construction, the equilibria are, as before, repre-

sented by exactly those points on the surface of the polar polytope that are completely

labelled. The artificial equilibrium(0,0) can be identified with the completely labelled

point on the facetX4 of P4∗ . Note thatX4 corresponds to the vertex ofP′ that has

all labels of player I, i.e. no strategy of player I is played with positive probability. So

the artificial payoff matrix that corresponds to this facet is the identity matrix that only
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consists of artificial payoff vectors. Its centre is a completely labelled point. So, in-

stead of considering the projection of the labelled facets, one might as well characterise

the equilibria using the “labelled sphere”P4∗ .

Figure 2.7: The labelled polar polytopeP4∗
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The labelled dual construction allows one to completely characterise the Nash equi-

libria of a non-degenerate bimatrix game in a geometric object of dimensionm−1 by

using only the setI of labels of player I. Assuming without loss of generalitym≤ n,

it is possible to visualiseX4∗ for all m≤ 4. It also demonstrates how non-degenerate

bimatrix games fit into the study of solutions of piecewise linear equations as in Eaves

and Scarf (1976), and allows one to illustrate how one can find a Nash equilibrium of

a non-degenerate bimatrix game.

2.3 The Lemke-Howson Algorithm in the Labelled Dual

Construction

The L-H algorithm described in Section 1.2 is the standard algorithm for finding a Nash

equilibrium in a non-degenerate bimatrix game. The L-H algorithm describes a path

in the product spaceX×Y (or X0×Y0 when including the artificial equilibrium points)

that is given by a set of points(x,y) ∈ X×Y that is described by labelsL(x)∪L(y) =

I ∪J−{k} for somek∈ I ∪J. This path consists of pairs of edges and vertices in the

product graph.

The fact that the L-H algorithm applies to a product graph makes it difficult to

visualise it for games of higher dimension. In this section, it is shown that every L-H

path inX×Y that is defined by a missing labelk∈ I of player I can be interpreted as a
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path in the labelled dualX4∗ that consists of paths that are almost completely labelled

with missing labelk. This allows one to give a new geometric interpretation not only

of the L-H algorithm but also of the fact that equilibria at the ends of an L-H path have

opposite indices (see Section 2.4 below).

Similar to the definition ofM(k) in (1.9), one can define the set of almost com-

pletely labelled points on the labelled surfaceP4∗ for a missing labelk of player I. So

let M(k)4∗ , for k∈ I , denote all those pointsws in P4∗ that have at least labelsI −{k},
i.e.

M(k)4∗ = {ws∈ P4∗ | I −{k} ⊂ I(ws)}. (2.11)

One obtains the following proposition (compare Theorem 1.3).

Proposition 2.7 Let G be a non-degeneratem× n bimatrix game. Fix a labelk ∈
I . ThenM(k)4∗ consists of disjoint paths and cycles inP4∗ . The endpoints are the

equilibria of the game, including the artificial equilibrium.

Proof. As before, let|P4| denote the simplicial surface ofP4. Since the payoff ma-

trix A(v) is non-degenerate for all simplicesv4 in |P4|, the set of almost completely

labelled points inv4 with a missing labelk is, if not empty, an edge (or line segment)

in v4. Now take an endpointws ∈ v4 of an edge inv4 with labelsI −{k}. Then

there are two cases. The first is wherews lies in the interior ofv4. In this case,ws

represents an equilibrium and is fully labelled. Sows is endpoint of a unique edge in

v4. The second case is wherews lies on the boundary ofv4. In this case, due to the

non-degeneracy assumption, the pointws lies in the interior of some(m−2)-face of

v4. This(m−2)-face is the face of another simplexv′4 in |P4| that is adjacent tov4.

In v′4, the pointws must be the endpoint of another edge with labelsI −{k}. So the

endpoints of edges ofM(k)4∗ in v4 are incident to one or two edges ofM(k)4∗ in P4∗ .

Note thatX4∗ is just a projection of the labelled facets ofP4∗ −X4 on X4. So the

paths and cycles inX4∗ with labelsI −{k} are projections of the paths and cycles in

P4∗ −X4 with labelsI−{k}. For notational convenience, the projection of these paths

and cycles inX4∗ is also denoted asM(k)4∗ . Equivalently, one can defineM(k)4∗ =

{ws ∈ X4∗ | I −{k} ⊂ I(ws)}. The endpoints of the paths inX4∗ are the equilibria of
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the game, not including the artificial equilibrium, since the artificial equilibrium lies

on the faceX4 on whichP4∗ −X4 is projected. I.e. the artificial equilibrium is not

seen under the projection and can be thought of lying underX4∗ . In the same way as

above one can confirm thatM(k)4∗ in X4∗ consists of paths and cycles.

The following lemma shows how the definitions ofM(k) andM(k)4∗ are related.

This yields a straightforward interpretation of the L-H algorithm on the labelled surface

P4∗ and in the labelled dual constructionX4∗ .

Lemma 2.8 Equilibria that are connected by a L-H path inM(k) are connected by a

path in M(k)4∗ . An edgeeX ×{w} ∈ M(k) is represented inM(k)4∗ by two adjacent

simplices. An edge{v}×eY ∈ M(k) is represented inM(k)4∗ by an edge inv4 with

labelsI −{k}.

Proof. First consider an edgeeX×{w} ∈M(k). TheneX is an edge inX0. Let this be

an edge inX betweenv1 andv2. Edges inX0 are represented in|X4| and|P4| by an

(m−2)-face that is common tov41 andv42 . As for the edge that connects the artificial

equilibrium with a pure strategy, i.e. the edge between0 and a pure strategyv, note that

every pure strategyv is represented in|P4| by a simplexv4 that is adjacent toX4, the

latter representing the artificial strategy0∈ Rm. In X4∗ this is reflected by the fact that

v4 has an(m−2)-face on the boundary ofX4∗ . So, if (v1,w) and(v2,w) lie along a

L-H path, thenv41 andv42 are adjacent and share the(m−2)-face that corresponds to

the labelsL(v1)∩L(v2). So the L-H path inX0 yields a union of adjacent simplices in

|X4| and|P4|.

Now suppose one has(v,w)∈M(k). Let(v,w)∈X×Y. Then, by the equivalence in

(2.10), one hasw∈ vbr4. This point corresponds to an almost completely labelled point

ws = l(w) ∈ v4 in the labelled dual construction. To see this, let(ws)k, k∈ I(v)∪J(v),

denote the row ofws that corresponds to the column ofA(v) that represents strategy

k. Also, letwk, k ∈ J(v), denote the probability with which strategyk is played inw.

Then define

l̃(w)k =





wk k∈ J(v)

c− (Aw)k k∈ I(v)
,

wherec is the maximum payoff for player I when player II playsw, and(Aw)k is the

payoff for player I in strategyk. In v, a strategyk∈ I(v) has probability zero. So, for
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k ∈ I(v), the expected payoff for the unplayed strategyk is (Aw)k. Normalisingl̃(w)

yields the vectorws = l(w) such thatI(ws) = I(v)∪ I(w), sows∈M(k)4∗ . Therefore,

the mappingl(w) is a lifting ofw∈ vbr4 to a pointws∈ v4 such thatI(ws) = I(v)∪ I(w)

(compare the projectionp in (2.9)).

Now consider an edge{v}×eY ∈M(k) that connects(v,w1) and(v,w2) with w1 6= 0

andw2 6= 0. By the equivalence in (2.10) one sees that theneY ⊂ vbr4, so the edge lies

on the best reply face ofv4. But that means thatl(eY) is an edge inv4 connecting

l(w1) andl(w2).

It remains to show that these lifted edges yield a connected path in the union of

simplices that correspond to the L-H path inX0. So letw be an endpoint of the edge

eY. Then one can distinguish two cases.

The first is whereI(v)∩ I(w) = {i}. In this case the pair(v,w) has a duplicate label

i of player I. This means that strategyi of player I is a best reply, but is not played with

positive probability inv. Therefore, one has(Aw)i = c, sol(w)i = 0, i.e. the lifted point

l(w) lies on the(m−2)-face where the weight on the artificial payoff vectorei is zero.

So it lies on the(m− 2)-face that corresponds to labelsL(v)−{i}. This represents

the edge inX0 that is described by labelsL(v)−{i} and connectsv and another vertex

v′, with (v,w) and(v′,w) both lying along a L-H path inM(k). So the lifted point is

adjacent to two edges, one inv4 and one inv′4.

The second case is whereI(v)∩ I(w) = /0. In this case(v,w) has a duplicate label

j of player II. This implies that strategyj of player II is a best reply, but is not played

with positive probability. Therefore,w j = 0 and hencel(w) j = 0, i.e. the lifted point

l(w) lies on the(m−2)-face ofv4 where the weight on the payoff vectorA j is zero.

So it lies on the(m−2)-face that corresponds to labelsL(v)−{ j}. This represents the

edge inX0 that is described by labelsL(v)−{ j} and connectsv and another vertexv′,

with (v,w) and(v′,w) both lying along a L-H path inM(k). So the lifted point is also

adjacent to two edges, one inv4 and one inv′4.

Finally, one has to account for the simplices adjacent toX4 and the artificial equi-

librium. The L-H path with missing labelk that starts in the artificial equilibrium is

such that, after two steps, it yields the pair(v,w), wherev represents pure strategyk,

andw is the pure best reply tov. Then either(v,w) is an equilibrium, in which case the
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completely labelled point inv4 is connected with the completely labelled point inX4

via an edge inv4 and an edge inX4. If (v,w) is not an equilibrium, pure strategyv

is not a best reply to pure strategyw. The lifted pointl(w) lies on the(m−2)-face of

v4 that corresponds to labelsL(v)− I(w), and is also connected with the completely

labelled point inX4 via an edge inv4 and an edge inX4. For pure strategiesv and

w such that(v,w) is an equilibrium, the completely labelled pointws in v4 connects

with a point on the(m−2)-face corresponding to labelsL(v)−{k}. This is also the

(m−2)-face ofv′4 such that(v,w) and(v′,w) both lie along a L-H path inM(k).

Figure 2.8: The L-H paths fork = 2 in X4∗
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The above lemma can be illustrated by considering the pathsM(2)4∗ for the game

in Example 2.3. This is depicted in Figure 2.8. According to the L-H algorithm, one

starts at the artificial equilibriumv0 = 0,w0 = 0 and looks at the path that has labels

1,3. Dropping label2 means that one flips from the artificial equilibrium simplex

X4 into the simplexv41 that represents pure strategy2 of player I. Thenv1 has labels

1,3,6, since6 is a best reply to pure strategy2, andw0 has labels4,5,6,7. Hence6

is a duplicate label. This determinesw1. Strategyw1 represents the pure best reply to

pure strategy2, which is6. Sow1 = (0,0,1,0) with labels4,5,7,3, since pure strategy

3 is a best reply tow1. In X4∗ , this is represented byws1. Now 3 is a duplicate label.

This determines the simplexv42 by flipping over the face that corresponds to vertices
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representing strategies1 and6. Thenv2 has labels1,7,6. Now 7 is a duplicate label,

determiningw2. The strategyw2 is the mixed strategy that mixes strategies6 and7,

with best replies1 and3. In X4∗ , this givesws2. Now w2 has labels5,4,1,3, so 1

is a duplicate label, which determinesv43 . The simplexv43 is the simplex adjacent to

v42 with common face spanned by vertices representing6 and7. This is the simplex

spanned by vertices representing4,6,7. Now 4 is duplicate, which determinesw3

in which pure strategy4 is played with positive probability. InX4∗ , this givesws3.

Strategyw3 has labels4,6,1,3, so now6 is a duplicate label. Flipping over the face

of v43 that is spanned by vertices4 and7 givesv44 spanned by vertices representing by

4,7 and1. Finally, label1 is duplicate, determiningw4 with labels5,6,2,3, which, in

X4∗ , is representedws4. The tuple(v4,w4) is an equilibrium of the game.

This reinterpretation of the L-H paths inX4∗ also allows one to illustrate why Nash

equilibria might be inaccessible in the sense that they are not connected via a union

of paths with the artificial equilibrium as noted by Shapley (1974). An example for

this situation is depicted on the left in Figure 2.9. The union of pathsM4
∗ (k), for

k ∈ I , is depicted in bold lines. The game represented on the left in Figure 2.9 has

three equilibria, one pure strategy equilibrium and two in which player I plays all three

strategies with positive probability. Starting at one mixed strategy equilibrium, every

path inM4
∗ (k) always leads to the other mixed strategy equilibrium and vice versa. So

for k∈ I , the L-H algorithm only finds the pure strategy equilibrium in which player I

plays only pure strategy1 (the equilibria might not be isolated when considering paths

M( j) for j ∈ J). X4∗ can also be used to show thatM4
∗ (k) might contain cycles. This is

depicted on the right in Figure 2.9, which illustrates a cycle with labels1,3 in M4
∗ (2).

2.4 An Orientation for Nash Equilibria

This section gives a re-interpretation of the index by means of the labelled dual con-

struction. This allows a simple visualisation of the index for anym×n bimatrix game

with m≤ 4, sinceX4∗ is of dimensionm− 1 for an m× n bimatrix game. Further-

more, this re-interpretation of the index extends to certain components of equilibria,

namely outside option equilibrium components in bimatrix games (Chapter 5). This

re-interpretation of the index is then employed in Chapter 4 to obtain a strategic char-
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Figure 2.9: Inaccessible equilibria and cycles inX4∗
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acterisation of the index in non-degenerate bimatrix games and in Chapter 6 to obtain

a characterisation of hyperessentiality in terms of the index.

The definition of the index inX4∗ is similar to the index as depicted in Figure 1.5,

i.e. it is defined by the relative ordering of the labels “around” an equilibrium. Consider

a completely labelled pointws ∈ X4∗ that represents an equilibrium. Note that in this

casews lies in the interior of some uniquev4. One now constructs a simplexw4s such

that it containsws and such that each vertex ofw4s lies in a different best reply region

of v4. Comparing the orientation of this simplex with the orientation induced byX4

then yields the index of the equilibrium represented byws.

The simplexw4s can be obtained as follows. Letws ∈ v4 be completely labelled.

For i ∈ I , let wi denote the vector, described as a convex combination of the vertices

of v4, such that the payoff for player I from the artificial payoff matrix is such that

A(v)wi has the maximum entryci
max in row i, and is the same constantci < ci

max in all

other rows. Such vectors exist: Ifws is completely labelled, extend the edge with labels

I −{i} into the best reply region with labeli. Then any point that lies on the extension

of the edge in the best reply region with labeli has this property. If a labeli ∈ I

represents an unplayed strategy, choose the vertex ofX4 that represents the unplayed

strategyi. In this case,wi is itself a unit vector such thatA(v)wi = ei . The construction

of w4s is depicted in Figure 2.10, in which label1 represents an unplayed strategy.

Thenw4s is the(m−1)-simplex spanned bywi , i ∈ I .

Now label each vertexwi with label i. This means thatw4s is an(m−1)-simplex

whose vertices are completely labelled, i.e. have all labelsi ∈ I . This induces an order-
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Figure 2.10: The construction ofw4s
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ing of the vertices ofw4s . The simplexX4 is also an(m−1)-simplex that is completely

labelled, spanned by the vertices−mv̂ei with label i, i ∈ I . To define the orientation in

X4∗ , choose the orientation ofX4 as the standard orientation. The expression (1.7) for

the vertices ofX4 is given by(−1)m. Let the coordinates ofwi with respect to the unit

vectors be given bywu
i . So, if v1, . . . ,vm are the vertices ofv4, described as column

vectors with respect to the unit vectors, thenwu
i = [v1, . . . ,vm]wi . Then the index of an

equilibrium is defined as follows.

Definition 2.9 The index of an equilibrium represented byws∈ X4∗ is +1 if w4s lies in

the same orientation class asX4, and it is−1 otherwise. That is, the index is defined

as

sign(−1)m det[wu
1, . . . ,w

u
m] = sign(−1)m det[v1, . . . ,vm][w1, . . . ,wm]. (2.12)

Proposition 2.10 below shows that the index in Definition 2.9 is the same as that

in Definition 1.4. It follows that the index as defined here does not depend on the

particular vertices ofw4s chosen. Furthermore, the index is well-defined and does not

depend on whether one usesX4∗ orY4∗ . It also follows that the definition is independent

of the labelling of the strategies. This can also be seen as follows. Re-labelling the

strategies of player I would induce a re-labelling of regions inX4∗ , without affecting

them as such. Therefore, a re-labelling of the strategies induces the same re-labelling

of the vertices ofX4 as of the vertices ofw4s .
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An illustration of Definition 2.9 is given in Figure 2.11. The pure strategy equi-

librium where player I plays pure strategy1, represented byw′′s, has index+1. The

labels aroundw′′s read1,2,3 in anti-clockwise direction, and so do the labels of the

vertices ofX4, which are the corners ofX4∗ . The labels aroundw′s read1,3,2 in anti-

clockwise direction or1,2,3 in clockwise direction. Hence the index is defined as−1.

The labels aroundws are oriented as the labels of the corners ofX4∗ , hence the index

is +1.

Thus, as described in Section 1.1, the index can be identified with a permutation

of the labelsI . In particular, if, for example, strategiesi1, . . . , ik, are played with zero

probability in an equilibriumws, then the(k−1)-face ofw4s that is spanned by the ver-

tices ofw4s representing labelsi1, . . . , ik is the same as the(k−1)-face ofX4 spanned

by the outer vertices representing labelsi1, . . . , ik. Choosing the orientation ofX4 as

the standard, this implies that the associated permutation of the labelsI is the identity

on the subset{i1, . . . , ik}. It follows that pure strategy equilibria have index+1. If

(v,w) is a pure strategy equilibrium in which strategyi of player I is played with prob-

ability 1, the permutation of the labelsI is the identity on the labelsI −{i}. But then

it must be the identity on{i}. So the permutation is the identity and has sign+1. This

can also be verified using the expression (2.12), noting that the entries ofwu
i are less

than zero.

Figure 2.11: The index inX4∗ for Example 2.3
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The above definition of index uses the orientation inX4∗ , which is the projection

of the labelled surfaceP4∗ . One can also define the orientation by using the labelled

surfaceP4∗ directly. In the same way as the simplexw4s is constructed inX4∗ , one can

constructw4s in P4∗ such that it lies on the facetv4 of P4 that containsws. These

simplices are also denoted asw4s .

To define the index inP4∗ , one has to account for the fact that the projection has an

effect on the orientation of simplices. Letw4s be a simplex around an equilibriumws

contained inv4, wherev4 is a facet ofP4−X4. Then the sign in (1.7) for the vertices

of w4s , ordered by their labels, is the opposite as the sign in (1.7) for the vertices of the

projected simplex.

To see this, note that the expression (1.7) for vertices of a simplex onP4∗ −X4

is the same as (1.8) for vertices of the simplex relative to the projection pointvp =

(−mv̂, . . . ,−mv̂). This is due to the fact that both points0 ∈ Rm and

vp = (−mv̂, . . . ,−mv̂) lie in the same of the two halfspaces which are defined by the

hyperplane containing the simplex. Furthermore, the expression (1.8) for a simplex

w4s relative tovp is not affected by the projection ofw4s on X4. For the simplexX4,

the expression (1.7) for the ordered vertices ofX4 is the negative as that in (1.8) rel-

ative tovp . Both 0∈ Rm andvp lie in different halfspaces defined by the hyperplane

containingX4. So if a simplexw4s in X4∗ has the same orientation asX4, it means

that the corresponding simplex inP4∗ has the opposite orientation asX4.

This is depicted in Figure 2.12. One the left, one looks at the surface ofP4 from

the projection pointvp throughX4, wherevp lies on the outside ofP4. On the right,

one looks at the surface ofP4 from 0 ∈ Rm, which lies the inside ofP4. Moving

from vp to 0∈ Rm changes the orientation ofX4, but not the orientation of the other

simplices.

Hence, inP4∗ the index of an equilibriumws is +1 if w4s has the opposite orienta-

tion asX4, and it has index−1 otherwise. This means that the artificial equilibrium

itself has, by definition, index−1. So let, as before,w1, . . . ,wm be the set of vertices

of w4s described by their coordinates with respect to the vertices ofv4, wherev4

is a facet ofP4. Let the vertices ofv4 be given asv1, . . . ,vm, described as column

vectors with respect to the unit vectors as basis. Letwu
1, . . . ,w

u
m denote the set of ver-
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Figure 2.12: The index inP4∗
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tices ofw4s described by their coordinates with respect to the unit vectors as basis. So

wu
i = [v1, . . . ,vm]wi . Then the index is given by

sign(−1)m+1det[wu
1, . . . ,w

u
m] = sign(−1)m+1det[v1, . . . ,vm][w1, . . . ,wm]. (2.13)

So the index as in (2.13) for the constructionP4∗ is the negative of the expression

(2.12) for the constructionX4∗ . This accounts for the effect of the projection on the

orientation.

Proposition 2.10 The index as in Definition 2.9 is the same as the index in Defini-

tion 1.4.

Proof. Without loss of generality, it can be assumed that the entries of the payoff

matricesA andB are strictly greater than zero. Consider the labelled surfaceP4. Let

(v,w) be an equilibrium, and letw4s be the corresponding completely labelled simplex

contained in the facetv4 of P4. The simplexv4 is spanned by some vectorsv1, . . . ,vm,

which are described as column vectors with respect to the unit vectors as a basis. These

vectors are somem vertices of the polar polytopeP4 as in (2.3).

If vl represents a strategyj of player II, thenvl = λ jB j , whereλ j = v̂
v̂−B j

is a

positive scalar (compare (2.2)). Ifvl represents an unplayed strategyi of player I, then

vl =−mv̂ei . Sovl =−λiei , whereλi = mv̂ is a positive scalar.

Let w1, . . . ,wm denote the ordered set of vertices ofw4s , given by their coordinates

with respect to the vertices ofv4. These vectors are, by construction, such thatA(v)wi

has the maximum entryci
max in row i, and is the same constantci < ci

max in all other

rows. LetC denote the matrixA(v)[w1 . . .wm]. ThendetC has positive sign, since any
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convex combination ofC with the identity matrix has full rank. Note that all entries of

C are strictly greater than zero, since all entries ofA are strictly greater than zero.

One obtains[w1, . . . ,wm] = A(v)−1C. With respect to the unit vectors, the vertices

of w4s are given by the vectors[wu
1, . . . ,w

u
m] = B̃[w1, . . . ,wm], whereB̃ = [v1, . . . ,vm].

The rows ofB̃ can be ordered such that if rowj of B̃ represents an unplayed strategy,

thenB̃ j =−λ jej . If the rows ofB̃ are ordered in this way, then thej-th column ofA(v)

is given byA(v) j = ej .

Let k denote the size of the support in(v,w), and letA′ andB′ be defined as in

(1.10). For the expression in (2.13), this gives

sign(−1)m+1 det[wu
1 . . .wu

m] = sign(−1)m+1 det
[
B̃A(v)−1C

]

= sign(−1)k+1 detB′ detA′. (2.14)

Note thatsign detA(v)−1 = sign detA(v) = sign detA′, sinceA(v) j = ej if col-

umn j represents an unplayed strategy. One also hassign detC = +1. Furthermore,

sign detB̃ = (−1)m−ksign detB′. This is due to the fact that the rows ofB̃ are ordered

such that if rowj of B̃ represents an unplayed strategy, thenB̃ j = −λ jej with λ j > 0.

All other rows of B̃ are positive multiples of columns ofB. Thus the expression in

(2.13) is the same as the expression in Definition (1.4).

The expression in (2.14) can be interpreted as follows. The term(−1)k+1 accounts

for the alternating sign of the matrix corresponding toX4, sign detB′ gives the orien-

tation ofv4, andsign detA′ gives the orientation ofw4s within v4.

In X4∗ , the artificial equilibrium is not represented as such. Instead, it can be

thought of lying underX4∗ , since it is covered by the projection ofP4∗ −X4. Al-

ternatively, the artificial equilibrium can be represented inX4∗ by attaching a mirrored

version ofX4 along some(m−2)-face toX4∗ as depicted in Figure 2.13. The represen-

tation of the index inX4∗ allows to intuitively show that indices which are connected

via a L-H path have opposite indices. This result was first proven by Shapley (1974).

Proposition 2.11 Equilibria connected by an L-H path have opposite indices. The

sum of indices of equilibria in a non-degenerate bimatrix game is+1.

Proof. The proof is illustrated in Figure 2.13. Note that the dual construction can also

be applied to player II’s strategy spaceY to obtainY4∗ to follow L-H paths defined by a
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missing labelj ∈ J. The proof here applies toX4∗ and L-H paths defined by a missing

labelk∈ I of player I. The proof for L-H paths inY4∗ is equivalent.

Take two equilibria(v1,w1) and (v2,w2) that are connected inX×Y via an L-

H path inM(k) for somek ∈ I . In X4∗ , this corresponds to two completely labelled

pointsws1 andws2 that are completely labelled and are connected inX4∗ by some path

in M4
∗ (k). Along the path, the relative position of the regions with labelsI −{k} is

constant. Fixing the face with labelsI −{k}, the vertex with labelk lies on one side in

w4s1, and on the other side inw4s2, sow4s1 andw4s2 must have opposite indices (see e.g.

Eaves and Scarf (1976) or Garcia and Zangwill (1981, Theorem 3.4.1)).

Figure 2.13: Orientation along L-H paths
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As argued above, the artificial equilibrium has orientation−1. Since for a given

missing label the L-H paths always yield equilibrium pairs (including the artificial

equilibrium), the sum of indices of equilibria equals0 if one also counts the artificial

equilibrium, and it equals+1 if one does not.

Proposition 2.10 shows that the index is independent of unplayed strategies. This

is also illustrated by the dual construction, since the permutation of the labels repre-

senting unplayed strategies is trivial. The following observation shows that this invari-

ance property, together with the fact that the sum of indices of equilibria of a game

equals+1, actually defines the index.

Proposition 2.12 Let Ind(v,w) be some index function that assigns an index+1 or

−1 to equilibria (v,w) of a non-degenerate bimatrix game. IfInd(v,w) is such that the
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indices of equilibria of a game add up to+1 and such that the index does not depend

on unplayed strategies, thenInd(v,w) must be the same as in Definition 1.4.

The proof is by induction on the numberk of strategies played in equilibrium. The case

k = 1 reflects pure strategy equilibria, for which both concepts yield index+1. Now

fix a non-degenerate bimatrix gameG, and consider an equilibrium ofG in which each

player playsk strategies. Consider the gamek× k bimatrix gameG′ that is obtained

from the original gameG by deleting all unplayed strategies, i.e. consider the game

with payoff matricesA′ andB′. Then the equilibrium is the only completely mixed

equilibrium inG′. The sum of indices of the equilibria ofG′ equals+1 with respect

to both Ind(·) and Definition 1.4. But for all equilibria ofG′ that usek− 1 or less

strategies, both indices are the same, noting that both concepts only depend on the

strategies played in equilibrium. The sum of indices of the equilibria ofG′ equals+1,

thus the indices of the completely mixed equilibrium ofG′ must coincide. These, in

turn, are the same as the indices of the equilibrium as an equilibrium ofG.

In the same way as in the proof of Proposition 2.12, one can show that the invari-

ance property, i.e. the index does not depend on unplayed strategies, and the property

that equilibria at the ends of L-H paths have opposite indices completely characterise

the index.
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Chapter 3

Sperner’s Lemma and Labelling

Theorems

This chapter shows how the labelled dual constructionX4∗ relates to labelled triangula-

tions as in Sperner’s Lemma. Sperner’s Lemma is a result from combinatorial topology

that applies to triangulations of the unit simplex together with a labelling of the vertices

in the triangulation. Sperner’s Lemma states the existence of a fully labelled simplex if

a certain boundary condition is satisfied. This condition is a restriction on the labelling

function for vertices on the boundary.

Sperner’s Lemma is equivalent to Brouwer’s fixed point theorem (see e.g. Garcia

and Zangwill (1981)). Since the Nash equilibria of a game can be described as the fixed

points of a suitable mappingf : X×Y → X×Y, a “connection” between Sperner’s

Lemma and bimatrix games is nothing new. What is new, however, is the fact that the

dual construction form×n bimatrix games relates to Sperner’s Lemma in dimension

m−1. This also allows one to show that the existence of a Nash equilibrium in an non-

degeneratem×n bimatrix game implies Brouwer’s fixed point theorem in dimension

m−1. Since Nash equilibria can, conversely, be described as fixed points, Brouwer’s

fixed point theorem is equivalent to the existence of Nash equilibria in non-degenerate

bimatrix games.

The structure of this chapter is as follows. Section 3.1 reviews Sperner’s Lemma in

its classical form. It shown that Sperner’s Lemma is equivalent to the KKM Lemma,

a classical result by Knaster, Kuratowski and Mazurkiewicz (1929), and to Brouwer’s
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fixed point theorem. In Section 3.2 it is shown how these results apply to bimatrix

games. In particular, it is shown that for every labelled regular triangulation|4m−1 |
with no vertices on the boundary other than the unit vectorsei with label i, there exists

anm×n non-degenerate bimatrix game such that the labelled dual construction for the

game is equivalent to the labelled triangulation (Proposition 3.9). The L-H algorithm

in that bimatrix game is equivalent to a well-known algorithm that finds completely

labelled simplices. It is also shown that for every labelled dual constructionX4∗ there

exists a refinement of|X4| and a labelling of the vertices that is consistent with the best

reply regions such that the Nash equilibria are represented by the completely labelled

simplices (Proposition 3.14). The relation of the dual construction to Sperner’s Lemma

is then used to show that the existence of Nash equilibria in non-degenerate bimatrix

games is equivalent to Brouwer’s fixed point theorem (Corollary 3.13). Section 3.3

translates the division ofX4∗ into a mapping that characterises the Nash equilibria.

This section is important, as it lies the technical foundation of the subsequent chapters.

3.1 Sperner’s Lemma

Sperner’s Lemma (Sperner (1928)) applies to triangulations of a simplex with labelled

vertices. Sperner’s lemma states that there exists an odd number of completely labelled

simplices in a labelled triangulation of the standard(m−1)-simplex4m−1 if a bound-

ary condition is fulfilled. This boundary condition states that the label of a vertexv

on the boundary is one of the labels of the vertices that span the face that containsv.

Sperner’s Lemma is a classical result from combinatorial topology and is equivalent

to Brouwer’s fixed point theorem and the KKM Lemma (see e.g. Garcia and Zangwill

(1981)).

A triangulation(or simplicial subdivision) of4m−1, denoted as|4m−1 |, is a finite

collection of smaller(m−1)-simplices whose union is the simplex, and that is such

that any two of the simplices intersect in a face common to both, or the intersection is

empty. LetV denote the set of vertices of the smaller simplices in|4m−1 |. A labelling

function is a function that assigns a labeli ∈ I = {1, . . . ,m} to each vertexv∈V, i.e.

L : V → I . An example of a triangulation of|4m−1 | with a labellingL is depicted
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in Figure 3.1. A triangulation together with a labelling of the vertices is referred to as

labelled triangulation.

Figure 3.1: A labelled triangulation
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The simplex4m−1 is spanned by the unit vectorsei ∈Rm, i ∈ I , whereI = {1, . . . ,m}.
The Sperner boundary condition, which is referred to as theSperner condition, states

that if a vertexv ∈ V lies on the(k−1)-face of4m−1 that is spanned byej , j ∈ Ik,

with Ik = {i1, . . . , ik} ⊂ I , thenL(v) ∈ Ik. Note that the Sperner condition only restricts

the labelling of vertices that lie on the boundary (Ik ⊂ I and Ik 6= I ). For vertices in

the interior of4m−1 there is no restriction (Ik = I ). So it is appropriate to refer to the

Sperner condition as a boundary condition. The Sperner condition implies that the unit

vectorsei have labeli. So every vertexv can only be assigned one of the labels of those

vertices that span the (minimal) face that containsv. For the example in Figure 3.1, the

Sperner condition is fulfilled. For example, the vertices that lie on the boundary face

spanned by vertices with labels1 and2 only have labels1 or 2.

Definition 3.1 (Sperner condition) Letv∈V be contained in a(k−1)-face of4m−1

spanned byej , j ∈ Ik, with Ik = {i1, . . . , ik} ⊂ I , and letk be minimal in this respect.

Then a labellingL : V → I fulfils the Sperner condition ifL(v) ∈ Ik.

Sperner’s Lemma states that there exists an odd number of completely labelled sim-

plices if the Sperner condition is satisfied. A simplex is called completely labelled if

the vertices of the simplex have distinct labels, i.e. if the vertices have labels1, . . . ,m.

It follows that there exists at least one completely labelled simplex. Sperner’s Lemma

also states that there exists one more completely labelled simplex with positive orienta-

tion than with negative orientation. An orientation is an equivalence class as described

through (1.7). According to (1.7), the sign of the determinant associated with the unit
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simplex4m−1 with vertices labelledL(ei) = i is +1. If a simplex is completely la-

belled, one can order the vertices according to their labelling. Applying (1.7) and

choosing the orientation of the unit simplex as the standard orientation, one can define

the orientation of a completely labelled simplex.

Definition 3.2 (Orientation) A completely labelled simplex has orientation+1, if it

falls in the same equivalence class as the unit simplex4m−1 with vertices labelled

L(ei) = i, and−1 otherwise.

The labels of a completely labelled simplex can be seen as an ordering of its vertices,

and the orientation of a fully labelled simplex corresponds to a permutation of the

labels of the vertices as described before. The orientation is+1 if the permutation has

sign+1, and it is−1 otherwise. For the example in Figure 3.1, the completely labelled

simplex in the bottom right corner has orientation+1; the labelling reads(1,2,3) in

anti-clockwise direction. The completely labelled simplex in the centre of Figure 3.1

has orientation−1; its labelling reads(1,2,3) in clockwise direction.

Theorem 3.3 (Sperner’s Lemma)Consider a labelled triangulation| 4m−1 | such

that the labelling satisfies the Sperner condition. Then there exists an odd number of

completely labelled simplices, one more with orientation+1 than with orientation−1.

Proof. This proof employs methods from combinatorial topology and is by induction

(see e.g. Henle (1994, p. 38) for the casem= 3). The case form= 1 is trivial, and

m= 2 is also easy to verify. So suppose the claim is true for triangulations of4m−2.

Fix a labelk ∈ I , and consider a simplex4 ∈ |4m−1 | that is spanned by vertices

v1, . . . ,vm. Consider an(m−2)-face of4 that is spanned by, say, verticesv1, . . . ,vm−1.

Relative to4, each(m−2)-face has an orientation induced by the orientation of4m−1

and the labelsI −{k}: If the m−1 vertices of the face do not have labelsI −{k}, the

orientation is 0. If the vertices of the face havem−1 distinct labelsI −{k}, then the

orientation of the(m− 2)-face is the orientation of the completely labelled simplex

that would be obtained by givingvm the missing labelk. This is depicted in Figure 3.2

for k = 1. There are three cases.
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1) A simplex4 does not have labelsI −{k}. In this case the orientations of its

(m−2)-faces are zero since no(m−2)-face can have labelsI −{k}. Hence the

sum of the orientations over the(m−2)-faces of4 is zero.

2) A simplex4 has exactly them− 1 distinct labelsI −{k}. Then exactly two

(m−2)-faces of4 are such that they have the samem−1 distinct labelsI−{k},
while all other(m−2)-faces have labels other thanI−{k}. The latter ones have

by definition orientation zero, while the two former ones are such that they have

opposite orientations. Hence the sum of orientations over the(m−2)-faces of

4 is also zero.

3) A simplex4 is completely labelled. Then, by definition, their exists exactly one

(m− 2)-face of4 with labelsI −{k}. This face has orientation+1 if 4 has

positive orientation, and orientation−1 if 4 has negative orientation.

Now consider an(m−2)-face that lies in the interior of4m−1. By definition, it belongs

to exactly two simplices that are adjacent. With respect to one simplex its orientation

is the negative of its orientation with respect to the other simplex (including the case

where the orientation is zero). So, adding up the orientations of all(m−2)-faces of

all simplices in|4m−1 |, this sum must equal the sum of orientations of the boundary

(m−2)-faces of|4m−1 |, since the orientations of(m−2)-faces in the interior cancel

out.

Boundary(m−2)-faces of|4m−1 | with labelsI−{k} can only lie on the(m−2)-

face spanned byei , i ∈ I −{k}. But the sum of orientations of these(m−2)-simplices

equals+1 by induction assumption. Hence, there exists exactly one more completely

labelled simplex with positive orientation than with negative orientation. Note that the

proof is independent of the labelk chosen for the proof.

An illustration of the proof in the casem = 3 is depicted in Figure 3.2 for the

example in Figure 3.1. Consider a triangle4 ∈ |42 |, and fix the labelk = 1. The

assigned orientation is+1 if the edge has labels2,3 oriented in the same way as the

edge2,3 in the original simplex, and−1 if it has labels2,3 oriented in the opposite

way. All other edges have orientation0. Now consider two triangles4 and4′ that

share an edge. Then the edge in one triangle has the opposite orientation as the same
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Figure 3.2: The proof of Sperner’s Lemma for42
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edge in the adjacent simplex. The sum of orientations of the edges of a triangle is

either+1, −1 (if completely labelled) or0 (if not completely labelled). But adding

up the sums of orientations of edges over all triangles in|42 | is the same as the sum

of orientations of edges on the boundary of|42 |, since the orientations of edges in

the interior of|42 | cancel out. The Sperner condition ensures that this outer sum is

+1. Boundary edges with labels2,3 can only lie on the(m−2)-face of42 spanned

by e2 ande3. On this1-face, the orientations add up to+1. Hence, there exists an odd

number of completely labelled simplices, one more with positive orientation than with

negative orientation. In Figure 3.2 these are depicted by bold edges.

So the Sperner condition, which is a restriction of the labelling on the boundary,

determines the existence of a completely labelled simplex. An alternative proof of

Theorem 3.3 can be given by using degree theory from algebraic topology, described

next. This proves useful when comparing the Sperner situation with the labelled dual

constructionX4∗ and when formalising a generalised version of Sperner’s Lemma that

applies to components of equilibria in Chapter 5. For this, one translates the labelled

triangulation into a mapping between two standard(m−1)-simplices. The mapping

also yields a division of4m−1 into labelled regions such that one can apply the KKM

Lemma (see below).

Definition 3.4 Consider the standard(m−1)-simplex4m−1. Then4m−1 is the (non-

disjoint) union ofm convex regions4m−1(i) with labelsi ∈ I as follows:4m−1(i) =

{x∈4m−1 | xi = maxk∈I xk}. This division of4m−1 into convex regions is referred to
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as the canonical division and is denoted as4m−1∗ . Each point inp∈4m−1∗ is assigned

the labels of the regions that containp, i.e.L(p) = {i ∈ I | p∈4m−1(i)}. The vertices

of4m−1∗ are the vertices of the sets4m−1(i), i ∈ I . The completely labelled point in

the centre of4m−1∗ is denoted asv∗.

Essentially, the division of4m−1∗ into labelled regions is same as the division ofX =

4m−1 into best reply regions in them×m coordination game with identity matrices

as payoffs, and the vertices of4m−1∗ are the vertices inX =4m−1. A depiction of the

canonical division is given in Figure 3.3.

Figure 3.3: The canonical division4m−1∗

. . .

.

.

.

.

1 2

3

The labelling now defines a mappingf S from |4m−1 | to4m−1∗ . Consider a simplex

4∈ |4m−1 | that is spanned by verticesv1, . . . ,vm. Each vertex has a labelL(vi), and is

mapped to the vertexeL(vi) in4m−1∗ . This mapping preserves the labels of the vertices,

i.e. L(v) = L( f S(v)). Having defined the mapping on the vertices of4, it can be

linearly extended to a mapping from4 by mapping a convex combination of vertices

on the convex combination of their images, i.e.f S(∑m
i=1λivi) = ∑m

i=1λi f S(vi).

It is easy to verify thatf S maps everyk-face of a simplex in|4m−1 | on somek-face

of 4m−1∗ . In particular, if thek+1 vertices of ak-face have distinct labelsi1, . . . , ik+1,

it is mapped affinely on thek-face of4m−1∗ that is spanned by unit vectorsei1, . . . ,eik+1.

If the k+ 1 vertices of that face have labelsi1, . . . , i l (with l ≤ k+ 1, so some labels

might be duplicate), it is mapped on the(l −1)-face of4m−1∗ that is spanned by unit

vectorsei1, . . . ,ei l . Since this also holds for the(m−2)-faces that lie on the boundary

of |4m−1 |, the mappingf S maps boundary on boundary, i.e.

f S : (|4m−1 |,∂|4m−1 |)−→ (4m−1
∗ ,∂4m−1

∗ ). (3.1)

The mapping in (3.1) is referred to as theSperner mapping, and induces a division

of | 4m−1 | into labelled regions| 4m−1 |(i). This is depicted in Figure 3.4. These
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regions are the pre-images of the regions4m−1(i) in the canonical division4m−1∗ .

This division of4m−1 into labelled regions is denoted as| 4m−1 |∗. The subscript

“*” symbolizes a division into labelled regions (as in the caseX4∗ ). The labels of a

point p ∈ |4m−1 |∗ are defined asL(p) = L( f (p)). The bold numbers and lines in

Figure 3.4 mark the regions|4m−1 |(i). In this representation, the completely labelled

points correspond to completely labelled simplices, since only the centre of completely

labelled simplices is mapped tov∗.

Figure 3.4: A division of4m−1 into labelled regions

1 1 22

2

3

3

1

1 1

2

3

v*

2 2

2 21

1

1
33

33

Alternatively, letv1, . . . ,vm be the vertices of some simplex4 in |4m−1 | with

labelsL(vi), for i ∈ I . A point in 4 is given by its coordinatesp with respect to

v1, . . . ,vm. Then, on each4, the mappingf S can be described by the matrixAS(4) =

[eL(v1) . . .eL(vm)] . This matrix is referred to as theSperner matrix. So a point in4
with coordinatesp is mapped toAS(4)p. The labels of a point with coordinatesp are

given byL(p) = {k∈ I | (AS(4)p)k = maxi∈I (AS(4)p)i}. So the division into labelled

regions is obtained in a similar way as the labelled dual construction is obtained via

A(v). The difference is that in the Sperner case the columns of the matrixAS(4) are

unit vectors, whereas in case ofA(v) the matrix consists of a mixture of payoff vectors

and unit vectors.

The Sperner condition determines the degree of the Sperner mappingf S. The

concept of degree is a useful tool that incorporates what was done “manually” in the

proof of Theorem 3.3. For the mappingf S, the degree counts the number of pre-

images of the completely labelled pointv∗ ∈4m−1∗ , where each pre-image is counted

with its local degree. The local degree at a pre-image ofv∗ equals the orientation of the

completely labelled simplex that contains the pre-image. For a mapping that permutes
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the vertices of a simplex, the degree equals the sign of the permutation. In Figure 3.4,

this is depicted by the oriented arc around completely labelled points.

Furthermore, the degree of a mapping is the same as the degree of the mapping re-

stricted to the boundary. The degree off S restricted to the boundary of4m−1 counts,

for an arbitrary but fixed labelk∈ I , the number of almost completely labelled points

on the boundary|4m−1 |∗ with labelsI −{k}, again counting each with its local de-

gree. The local degree off S restricted to the boundary equals the orientation that was

assigned to(m−2)-faces in the proof of Theorem 3.3. In particular, it is independent

of the labelk chosen.

The two paragraphs above contain all that is needed in terms of degree theory for

the remainder of this work. A detailed account of the degree can e.g. be found in Dold

(1972, IV, 4 and 5).

Lemma 3.5 If the Sperner condition is satisfied then the degree of the Sperner map-

ping f S is +1.

Proof. The proof is by induction. Form = 1 the case is trivial (and form = 2 it is

also easy to check). So suppose the statement is true for triangulations of the standard

(m− 2)-simplex. Fix a labelk ∈ I . In the division of4m−1∗ into labelled regions

consider the vertexv with labels I − {k} that lies on the(m− 2)-face spanned by

unit vectorsei , i ∈ I −{k}. Now restrict f S to the boundary. Forf S restricted to

the boundary, the pre-images ofv can only lie on the(m− 2)-face of | 4m−1 | that

is spanned byei , i ∈ I −{k} (see also Figure 3.4). This is ensured by the Sperner

condition. But then the degree off S restricted to the boundary is+1 by induction

assumption, which equals the degree off S.

After translating the labelling into a mapping, Sperner’s Lemma is simply a conse-

quence of Lemma 3.5. The degree off S equals+1. This degree is, as explained above,

the sum of local degrees at pre-images ofv∗. But the local degree at a pre-image of

v∗ is the same as the orientation of the completely labelled simplex that contains the

pre-image.

The induced division| 4m−1 |∗ is a division to which one can apply the KKM

Lemma, a classical result by Knaster, Kuratowski and Mazurkiewicz (1929).
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Theorem 3.6 (KKM Lemma) LetCi , with i ∈ I = {1, . . . ,m}, be a collection of closed

subsets of4m−1 such that for all subsetsIk⊂ I the face of4m−1 that is spanned byei ,

for i ∈ Ik, is contained in
S

i∈Ik Ci . Then
T

i∈I Ci 6= /0.

Proof. The KKM Lemma is implied by Sperner’s Lemma. To see this assume that
T

i∈I Ci = /0. Now each subsetCi is closed by assumption, and since it is bounded,

it is compact. So the setΠi∈ICi is compact, and the mappingΠi∈ICi → R defined

by (x1, . . . ,xl ) 7→ maxi, j ‖xi − x j‖ takes a minimumε > 0. Therefore there exists an

ε > 0 such that for allx ∈ 4m−1 the ε-neighbourhoodUε(x) aroundx is such that

Uε(x)∩Ci = /0 for at least one setCi . Now choose a triangulation of4m−1 such that

each simplex in the triangulation has a diameter smaller thanε. Label the verticesv

such thatL(v) ∈ {i | v ∈ Ci}. Then one has a triangulation of4m−1 that fulfils the

Sperner condition but does not contain a completely labelled simplex. This violates

Sperner’s Lemma.

Conversely, it is easy to see that the KKM Lemma implies Sperner’s Lemma. As-

suming a triangulation of4m−1 that fulfils the Sperner condition but does not contain a

completely labelled simplex, one obtains a division of4m−1 via the Sperner mapping

f S that satisfies the assumptions of the KKM Lemma but does not contain a completely

labelled point. Thus Sperner’s Lemma is equivalent to the KKM Lemma (see also e.g.

Garcia and Zangwill (1981)).

There exists a well-known algorithm that finds a completely labelled simplex in

|4m−1 | (or a completely labelled point in|4m−1 |∗). This algorithm is described be-

low, and is referred to as theSperner algorithm. First, “extend”|4m−1 | by inscribing

it into a larger(m−1)-simplex|4m−1 |e as shown in Figure 3.5 (see e.g. Scarf (1983)).

This gives a triangulation of the extended simplex that coincides with the triangulation

|4m−1 | in the interior. Now label the vertices that span|4m−1 |e such that there are

no completely labelled simplices except from those in|4m−1 |. This is possible due to

the Sperner condition: Take the outer vertex of the extended structure that lies on the

outside of the face of|4m−1 | on which the vertices can only have labelsi ∈ I −{k}.
Labelling the outer vertex withk+1 (modm) ensures that no new completely labelled

simplices are created. Furthermore, it ensures that, for every set of labelsI−{k}, there

exists exactly one(m−2)-face on the boundary of|4m−1 |e that has labelsI −{k}.
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Figure 3.5: An algorithm for finding completely labelled triangles
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The algorithm can now be described as follows (see Figure 3.5). Start from the

outside of the extended construction (or at a completely labelled simplex once one has

been found). Choose a labelk∈ I and flip over the(m−2)-face that has labelsI−{k}.
If the new simplex is not completely labelled, it must have exactly one other(m−2)-

face (other than the face one flipped over) with the same labelsI −{k}. Then flip over

this (m−2)-face into an adjacent simplex, and so on. Eventually, this algorithm yields

a completely labelled simplex in|4m−1 | (see e.g. Scarf (1983)). Simplices that are

connected through the algorithm have opposite orientation.

The Sperner algorithm translates easily into the topological setting. Letf S denote

the Sperner mapping from the enlarged simplex| 4m−1 |e to 4m−1∗ . This yields a

division of the extended simplex into labelled regions in which the completely labelled

simplices correspond to points that are mapped tov∗ under f S. For every labelk, there

exists exactly one point on the boundary with labelsI −{k}. The path with labels

I −{k} that starts on the boundary leads to a completely labelled point.

To emphasise the relevance of Sperner’s Lemma in fixed point theory, this section

concludes by proving the familiar theorems that show that Sperner’s Lemma implies

Brouwer’s fixed point theorem and vice versa. This also allows one to show in the

next section that the existence of Nash equilibria in non-degenerate bimatrix games is

equivalent to Brouwer’s fixed point theorem.
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Figure 3.6: The Sperner algorithm as a path-following algorithm
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Theorem 3.7 (Brouwer’s fixed point theorem) Every mappingf : 4m−1 →4m−1

has a fixed point, i.e.∃ x∗ ∈4m−1 : f (x∗) = x∗.

Proof. Assume the contrary, i.e. for allx ∈ 4m−1 one hasf (x) 6= x. This defines a

mappingr : 4m−1 → ∂4m−1 that retracts4m−1 on its boundary. Definer(x) as the

point on the boundary that is given by the intersection point between the line defined by

x and f (x) in direction ofx and the boundary (see the left picture in Figure 3.7). Since

r is continuous and defined on a compact set, the mappingr is uniformly continuous.

Now take a triangulation of4m−1 into sufficiently small simplices, say with diame-

ter smaller than someδ. Then label the vertices according toL(v) = L(r(v)), where

L(r(v)) is the label of the pointr(v) in the canonical division. Then one has a labelling

that satisfies the Sperner condition (sincer is the identity on the boundary) and is such

that no simplex is fully labelled ifδ is sufficiently small: Everyδ-neighbourhood ofx

is mapped on some smallε-neighbourhood ofr(x), which does not contain more than

m−1 distinct labels for smallε. This contradicts Sperner’s Lemma.

Brouwer’s fixed point theorem depends on the fact that4m−1 cannot be retracted

to its boundary. If there exists a subdivision|4m−1 | with a labelling that satisfies the

Sperner condition and does not contain a completely labelled simplex then the Sperner

mappingf S is a mapping that retracts4m−1 to its boundary. Assuming without loss of

generality there are no vertices except those of4m−1 on the boundary (by inscribing

|4m−1 | into an extended structure as above), the mappingf S is the identity on the

75



boundary. Thus the “no-retraction” property implies Sperner’s Lemma. But Sperner’s

Lemma can also be deduced directly from Brouwer’s fixed point theorem.

Figure 3.7: Sperner’s Lemma implies Brouwer and vice versa
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Proposition 3.8 Brouwer’s fixed point theorem implies Sperner’s Lemma and Sperner’s

Lemma implies Brouwer’s fixed point theorem.

Proof. The latter implication was shown in the proof of Theorem 3.7. So it remains to

show that Brouwer’s fixed point theorem implies Sperner’s Lemma. Suppose one has

a labelling that satisfies the Sperner condition and that does not contain a fully labelled

simplex. Then the Sperner mappingf S is such thatf S(x) 6= v∗ for all x∈4m−1. Then

defineg(x) as the point on the boundary that is defined as the intersection of the line

betweenf S(x) andv∗ in direction ofv∗ with the boundary (see the right picture in

Figure 3.7). Theng(x) is a mapping for whichg(x) 6= x for x in the interior of4m−1.

Now supposex lies on somek-face of4m−1. By construction of the Sperner mapping,

the point f S(x) lies on thatk-face, and the line connectingf S(x) andv∗ does not go

elsewhere through this face. Sog(x) 6= x for all points on the boundary, and henceg

has no fixed points. This contradicts Brouwer’s fixed point theorem.

3.2 The Application to Bimatrix Games

The division|4m−1 |∗ into labelled regions induced by the labelled triangulation al-

ready shows strong similarities with the labelled dual constructionX4∗ . The division

of |4m−1 |∗ is induced by the Sperner matrixAS(4) as described on page 71, whereas
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the division ofX4∗ is induced by the artificial payoff matrixA(v). The difference, how-

ever, is thatAS(4) only consists of unit vectors, whereasA(v) consists of a mixture

of unit vectors representing unplayed strategies and columns ofA representing pure

strategies of player II. So the division of a simplex in|X4| into best reply regions is

in general more complex than the division of simplices in|4m−1 |. Furthermore, the

triangulation|X4| is regular as it arises from the projection of a simplicial polytope.

The triangulation in the Sperner case can be any triangulation.

Despite the differences, there are still striking similarities between|4m−1 |∗ and

|X4|∗, and this section shows how and under what circumstances one can translate

one situation into the other and vice versa. The equivalence of Brouwer’s fixed point

theorem and the existence of Nash equilibria in non-degenerate bimatrix games (Corol-

lary 3.13 below) also shows that these differences are not very deep.

Proposition 3.9 Let |4m−1 | be a labelled triangulation of the unit simplex with no

vertices on the boundary other thanei , for i ∈ I . Let the Sperner condition be satisfied,

soL(ei) = i. If the triangulation of4m−1 is regular, then there exists a non-degenerate

m×n bimatrix game such that|4m−1 |= |X4| and |4m−1 |∗ = X4∗ (after identifying

X4 with4m−1).

Proof. Let |4m−1 | be a regular triangulation. Consider the simplexX4 that is spanned

by the vertices−mv̂ei , for i ∈ I and some positive constantv̂. Then4m−1 can be

identified withX4 via a linear mapping defined byei 7→ −mv̂ei . This mapping induces

a regular triangulation|X4| of X4. The label of a vertexv ∈ |X4| is defined by the

label of its pre-images.

This yields a labelled and regular triangulation ofX4. Since the triangulation is

regular, the triangulation is the projection of some simplicial polytopeP4 as in 2.3,

with the firstm vertices ofP4 given by−mv̂ei , i ∈ I . The vertices ofP4 satisfy the

conditions in Lemma 2.2 since the triangulation is regular. Also, it can be assumed that

0∈ Rm lies in the interior ofP4. If not, one could just move the vertices except for

−mv̂ei , i ∈ I , along the projection lines to obtain a combinatorially equivalent polytope

that contains0∈ Rm. As described in Lemma 2.2, this yields the columns of a payoff

matrixB such that the best reply polytopeP that arises fromB is the polar ofP4. This
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determines the payoffs for player II. Note that if there aren vertices in the interior of

|4m−1 |, then the resulting game is of dimensionm×n.

Finally, one has to determine the payoff matrixA for player I. These payoffs are

determined by the labelling of the vertices. Each vertexv ∈ |X4| represents a pure

strategy of player II. If the label of a vertex isi for somei ∈ I , then define the payoff

for player I with respect to the pure strategy that is represented by vertexv asei , the

unit vector with entry in rowi. Then the induced polyhedral division into best reply

regions of the simplices in|X4| is the same as the division induced by the labelling

of the vertices in|4m−1 |. The payoff matrixB that induces|X4| is generic. So is

the payoff matrixA that only consists of unit vectors and induces the division into best

reply regions.

Corollary 3.10 For a missing labelk∈ I of player I, the L-H algorithm for the game

constructed in Proposition 3.9 follows the same path of simplices as the Sperner algo-

rithm.

Proof. This is an immediate consequence from the construction. The L-H algorithm

follows the path of almost completely labelled points in the labelled dual construction.

This corresponds to flipping over(m−2)-faces in the triangulation which havem−1

distinct labels. The labelled dual construction is identical with the division of4m−1

that is induced by the Sperner mappingf S. But the Sperner algorithm also flips over

those(m−2)-faces in the triangulation that havem−1 distinct labels. Hence the paths

of both algorithms are identical.

Proposition 3.9 is used to conclude Brouwer’s fixed point theorem from the exis-

tence of Nash equilibria in bimatrix games. The idea of the proof is based on translat-

ing a division|4m−1 |∗ that arises from a Sperner labelling into a divisionX4∗ with a

triangulation|X4| that is regular and arises from a payoff matrixB.

For this, consider some triangulation of4m−1. Then add a vertexv. Suppose this

vertex is contained in some simplex4 that is spanned by verticesv1, . . .vm. Note that

it is allowed forv to lie on somek-face of4. Then consider the refinement of4 that

is given by the simplices spanned by

{v,v2, . . . ,vm}; {v1,v,v3, . . . ,vm}; . . . ; {v1, . . . ,vm−1,v}. (3.2)

78



If v lies on thek-face of two or more simplices, the refinement in (3.2) applies to each

simplex that containsv. An illustration for this is given on the left in Figure 3.8. First

the vertexv is added, then the vertexv′, and finally the vertexv′′. Note that some of

the simplices in (3.2) are not full-dimensional in casev lies on somek-face of4 with

k≤ (m−2). In this case, they become faces of simplices in the triangulation.

A refinement of a given triangulation that is achieved by iteratively adding vertices

at a time to the triangulation is referred to as aniterated refinement. The following

lemma shows an iterated refinement can divide a simplex into arbitrarily small sim-

plices. Themeshof a triangulation is defined as the maximum diameter of a simplex

in the triangulation.

Lemma 3.11 For everyε > 0 there exists an iterated refinement of4m−1 such that the

mesh size of the triangulation is smaller thanε.

Proof. It is shown that the barycentric subdivision is an iterated refinement. The

barycentric subdivision is known to produce simplices of arbitrarily small maximal

diameter (see e.g. Dold (1972, III, 6)).

A depiction of the barycentric subdivision is given on the right in Figure 3.8. Take

a simplex in the triangulation. Then add the barycentre of the(m− 1)-simplex as a

vertex. Next, add the barycentres of its(m−2)-faces as vertices, and continue with

the lower dimensional faces and their barycentres. Note that if one adds a vertex to a

k-face that is common to more than one simplex in the triangulation, then the vertex

is the barycentre of thatk-face, i.e. the added vertex is the same for all simplices that

contain thek-face. This procedure yields the barycentric subdivision.

Figure 3.8: An iterated refinement of a simplex and the barycentric subdivision
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Lemma 3.12 Let |X4| be a regular triangulation ofX4 with no vertices on the bound-

ary other than those that spanX4. Then every iterated refinement of|X4| that does
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not add vertices to the boundary ofX4 is a regular triangulation. In particular, if

|X4| arises from a payoff matrixB, then the refinement arises from an extended payoff

matrix that consists of the original columns ofB and additional columns.

Proof. It is required that the added vertices do not lie on the boundary ofX4 so that the

resulting triangulation can still be achieved as the dual construction for some bimatrix

game.

So let|X4| be a regular triangulation. Then consider the polytopeP4 that yields

|X4| via projection. Now take a pointv in the interior of|X4|. This point is represented

by some pointvP on the boundary of the polytopeP4. Now take a point on the line

defined byv andvP that lies outside ofP4 but is still closeP4. This is depicted in

Figure 3.9. Let this point be denoted byc.

Figure 3.9: An iterated refinement of|X4|
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Let P4 be defined as the convex hull of points as described in (2.3). Now consider

the polytopeP4c that is given by

P4c = conv{c,c1, . . . ,cn} .

Thenc becomes a new vertex of the polytope. Then the vertexc refines the simplicial

structure ofP4 in a way such that the projection ofP4c yields the iterated refinement

that is obtained by adding the pointv as a vertex. The vertexv is the projection of the

vertexc.

For each added point, the polytopeP4c satisfies the requirements of Lemma 2.2.

Hence, by Lemma 2.2, one can obtain a payoff matrix that induces the refinement. If

the original triangulation arises from a payoff matrixB, the refinement corresponds to
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a payoff matrix which contains the original columns ofB and that has an extra column

for each added vertex.

In Section 3.1 it was shown that Sperner’s Lemma is equivalent to Brouwer’s fixed

point theorem. This section shows how to construct non-degenerate bimatrix games

from regular labelled triangulations such that the dual construction has the same prop-

erties as the labelled triangulation. Combining these results, one obtains the following

result.

Corollary 3.13 The existence of a Nash equilibrium in a non-degeneratem× n bi-

matrix game implies Brouwer’s fixed point theorem in dimensionm−1. Since Nash

equilibria can, conversely, be described as fixed points, Brouwer’s fixed point theorem

is equivalent to the existence of Nash equilibria in non-degenerate bimatrix games.

Proof. Consider a mappingf : 4m−1→4m−1. Assumef (x) 6= x for all x∈4m−1. As

in the proof of Theorem 3.7, this yields a retractionr that is defined by the intersection

of the line betweenx and f (x) in direction of x with the boundary of4m−1. The

mappingr then divides4m−1 into labelled regions by considering the pre-images of

the labelled regions on∂4m−1∗ . In the proof of Theorem 3.7, this division is used to

create a labelled triangulation of4m−1 such that no simplex is completely labelled.

Here, it is shown that one can create a regular labelled triangulation of4m−1 with no

vertices added to the boundary of4m−1 such that no simplex is completely labelled.

Using Proposition 3.9 one can then create anm×n non-degenerate bimatrix game that

does not possess an equilibrium, leading to a contradiction.

Take the division of4m−1 into labelled regions induced by the retractionr. Con-

struct iteratively a triangulation of4m−1 such that its mesh is so small that no simplex

is completely labelled. As before, the label of a vertex is a label of a region that con-

tains the vertex. Note that the mesh of the triangulation can be constructed arbitrarily

small (see Lemma 3.11)

Let v1, . . . ,vN be the set of vertices added to the triangulation, where the subscript

reflects the order in which the vertices are added. LetΛ ⊂ {1, . . . ,N} denote the or-

dered subset for those vertices that were added to the boundary of4m−1. Now take

the vertexvλ, for λ ∈Λ, that is added last to the triangulation, and consider the iterated
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refinement that is obtained by adding the set of vertices{v1, . . . ,vN}−{vλ} in canon-

ical order. Continuing with the second-to-last vertex that was added to the boundary

of 4m−1 and so forth finally gives an iterated refinement with no vertices added to the

boundary of4m−1 that, by Lemma 3.12, is regular (see also Lemma 4.2 in the next

chapter).

It remains to show that the deletion of vertices on the boundary does not create

completely labelled simplices. Letv be a vertex that was added to the boundary. Then

v = ∑l
i=1µivi with µi > 0 and1>l µ = 1, for somev1, . . . ,vl . Note that the retractionr

is the identity on the boundary of4m−1. In particular, the labelling satisfiesL(v) =

L(vi) for somei ∈ {1, . . . , l}. So the face spanned by{v1, . . . ,vi−1,v,vi+1, . . . ,vk} has

the same labels as the face spanned by{v1, . . . ,vi−1,vi ,vi+1, . . . ,vk}. So a simplex

spanned by{v1, . . . ,vi−1,v,vi+1, . . . ,vk} and some{vk+1, . . . ,vm} is fully labelled if

and only if the simplex spanned by{v1, . . . ,vi−1,vi ,vi+1, . . . ,vk} and{vk+1, . . . ,vm} is

fully labelled. Hencev can be removed without creating a completely labelled simplex

(see also Lemma 4.4 in the next chapter).

McLennan and Tourky (2004) have recently shown how Kakutani’s fixed point

theorem can be proven by game theoretic concepts. They create games whose Nash

equilibria yield approximate fixed points, where the existence of the Nash equilibria is

ensured by the Lemke-Howson algorithm. The authors argue that “the Lemke-Howson

algorithm embodies, in algebraic form, the fixed point principle itself, and not merely

the existence theorem for finite two person games” (p. 3–4). The analysis above sup-

ports this view.

This section concludes with an observation that shows how to translate the labelled

dual constructionX4∗ into a labelled triangulation that satisfies the Sperner condition

such that it reflects the combinatorial properties ofX4∗ .

Proposition 3.14 LetX4∗ be the labelled dual construction for some(m×n)-bimatrix

game, and let|X4| denote the regular triangulation ofX4. Then there exists a labelled

refinement of|X4| such that a vertex in the refinement has labeli if and only if it is

contained in the region with labeli and such that a simplex is completely labelled if

and only if it contains a completely labelled pointws∈ X4∗ .
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Proof. Take some simplexv4. The polyhedral division is generally not such that one

can just label the vertices ofv4 with the respective best reply labels without refining

v4. Consider for example the polyhedral subdivisions depicted in Figure 3.10. In the

first case, just labelling the vertices would yield a labelling such that the simplex is not

completely labelled, although it contains a fully labelled point. In the second case, one

would obtain a completely labelled simplex, although it does not contain a completely

labelled point. Therefore, refinement is necessary.

Figure 3.10: A refinement ofv4
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Now one can refine the mesh of|X4|. This can, for example, be achieved by an

iterated refinement. If the refinement is sufficiently small, a simplex contains a fully

labelled point if and only if all its vertices lie in distinct best reply regions. Labelling

the vertices according to the best reply region yields the desired labelled refinement.

A possible refinement for the game in Example 2.3 is depicted in Figure 3.11. In

this case, it is sufficient to add a vertex to the edge between vertices representing strate-

gies4 and7. The resulting refinement fulfils the requirements of Proposition 3.14.

Figure 3.11: A labelled triangulation for the game in Example 2.3
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3.3 A Topological Interpretation of the Dual Construc-

tion

In the Sperner case above, a mappingf S characterises the completely labelled sim-

plices in the sense that a simplex is completely labelled if and only if it contains a

point that is mapped to the completely labelled pointv∗ ∈ 4m−1∗ . This mapping can

be described by the Sperner matrixAS(4) for each simplex4 in the triangulation.

The aim of this section is to construct a similar mappingf4 for X4∗ via the artificial

payoff matrixA(v). This mapping is used in extending the dual construction to outside

option equilibrium components and when giving a new characterisation of index +1

equilibria.

Take the payoff matrixA for player I. First the columnsA j of A, for j ∈ J, are

normalised as follows. Without loss of generality it can be assumed that all entries

of A j are greater than zero. Otherwise one can add a positive constant to all payoffs

without affecting the best reply regions and hence the equilibria of the game. Let

|A j | = ∑N
i=1Ai j , i.e. |A j | denotes the sum of entries in columnA j . By assumption

|A j | 6= 0. Let Amax = maxj∈J|A j |. Add the positive constantAmax−|A j |
m to column j.

Adding a positive constant to a column of player I’s payoff matrix also leaves the

equilibria and best reply regions invariant. In the modified payoff matrix, the entries in

each column add up toAmax. Now divide all payoffs byAmax. This, again, leaves the

Nash equilibria invariant. Hence one obtains an equivalent payoff matrix, also denoted

asA, in which all entries are positive and in which the column entries add up to+1.

Now consider a simplexv4 in |X4|. Let ws be a point inv4. The pointws can be

described by convex coordinates with respect to the vertices ofv4. So for a pointws

in v4 that is given by its coordinates with respect to the verticesv4 one can simply

define fv(ws) = A(v)ws. Then fv(w) ∈4m−1 since

|A(v)w|=∑
i
(A(v)w)i =∑

i
∑

j
A(v)i j w j =∑

j
∑
i

A(v)i j w j =∑
j

w j ∑
i

A(v)i j =∑
j

w j = 1.

A depiction of fv is given in Figure 3.12. It shows a simplexv4 spanned by vertices

v1,v2 andv3 and its image in4m−1∗ . The columns ofA(v) are given byA1,A2 andA3.

By construction, the columnsAi (i = 1,2,3) are elements of4m−1. So the image offv

is the subset of4m−1∗ that is spanned by the payoff vectorsA1,A2 andA3 in 4m−1∗ . In
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particular, the image is some simplex that lies in4m−1∗ (this simplex is not necessarily

full dimensional, even for non-degenerate payoff vectors). The division ofv4 into

best reply regions is an affine transformation of the division of the simplex spanned by

A1,A2 andA3, whose division is that induced by the division of4m−1∗ .

Figure 3.12: The mappingfv
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If v1 andv2 share a common face, the mappingsfv1 and fv2 are identical on that

face. Hence, by definingf piecewise on each simplexv4 as fv, one obtains a mapping

f : (X4∗ ,∂X4∗ )−→ (4m−1
∗ ,∂4m−1

∗ ). (3.3)

Note that the mapping on the boundary ofX4 is given by the unit vectors as com-

ponents ofA(v), so f maps boundary on boundary. Furthermore, by construction, the

labels of a pointws are the same as the labels of its image. The mappingf in (3.3) is

referred to as thepayoff mapping, since the value off is the expected payoff of player I

under a strategy profilews of player II (including the slack variables). A depiction of

the underlying geometry is given in Figure 3.13. It shows that the simplex marked in

dashed lines is mapped affinely on a simplex in4m−1∗ , also described by dashed lines.

The vertices of the simplex in4m−1∗ are the images of the vertices in|X4|.

This is a crucial difference to the Sperner case. There, the images of simplices are

either the simplex4m−1∗ itself (if the simplex is completely labelled), or the images

are faces of4m−1∗ (if the simplex is not completely labelled). In the dual construction,

the images of simplicesv4 are simplices which are contained in4m−1∗ . Nevertheless,

the simplexv4 contains a completely labelled point if and only if its image underf

contains the completely labelled pointv∗.

Note thatX = 4m−1. So, so far,f is a mappingf : X4 → X. To define the

index via a mapping, it is more convenient to have a mappingX4∗ → X4, whereX4 is

85



Figure 3.13: The payoff mappingf
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divided into best reply regions as inP4∗ , i.e. via the unit matrix that assigns each vertex

−mv̂ei of X4 the artificial payoffei . The simplices4m−1∗ andX4 are homeomorphic

via the mappingId4 that is described by the matrix−mv̂ · Id, whereId is them×m

identity matrix. In particular, the labels of a pointw∈4m−1∗ are the same as the labels

of its imageId4(w). This is due to the fact that the vertex in4m−1 with label i is

mapped to the vertex ofX4 with label i.

UsingId4, one defines thedual payoff mappingf4 as the composition ofId4 and

f , i.e. f = Id4 ◦ f . This yields

f4 : (X4∗ ,∂X4∗ )−→ (X4,∂X4) (3.4)

A depiction of f4 is given in 3.14. The only difference to the payoff mappingf is that

it mapsX4∗ onX4 instead of4m−1∗ .

The difference betweenX4 and4m−1 is that they have the same orientation rela-

tive to projection pointvp = (−mv̂, . . . ,−mv̂) for oddm, and opposite orientation for

evenm. This is depicted in Figure 3.15, and can be verified using an inductive argu-

ment.

For notational convenience, letv∗ denote the completely labelled point inX4 (as

it does in4m−1∗ ). Note that both completely labelled points inX4 and4m−1∗ have

coordinates( 1
m, . . . , 1

m) with respect to the vertices ofX4 and4m−1∗ . So the equilibria

of a game are represented by exactly those pointsws that are mapped tov∗ under the

mappingf4. Also, the index can be described by the local degree off4.
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Figure 3.14: The dual payoff mappingf4
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Figure 3.15: The orientation of theX4 and4m−1

∆m−1

*

∆X

3

1 2

12

3

^

^ 1

2

(1,0)

(0,1)

(0,−mv)

(−mv,0)

1

2

Lemma 3.15 Let ws ∈ ( f4)−1(v∗). Then the index ofws as in Definition 2.9 is the

same as the local degree off4 at ws.

Proof. The index in Definition 2.9 is defined by a permutation of the labelsI of a sim-

plexw4s , which corresponds to a permutation of vertices. For a mapping that permutes

the vertices of a simplex, the degree equals the sign of the permutation (see e.g. Dold

(1972, IV, 4, Example 4.3)).

Using the mappingf4 and degree theory, it follows that the sum of indices over

the equilibria of a game equals+1, so the number of equilibria is odd. This can be seen

as follows. The degree of the mappingf4 has similar properties to the degree of the

Sperner mappingf S described on page 72. Similar to the Sperner mapping, the degree

of the mappingf4 counts the number of completely labelled points inX4∗ , where each
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point is counted with its local degree. This local degree is, by Lemma 3.15, the same

as the index.

Furthermore, the degree of the mappingf4 is the same as the degree off4 re-

stricted to the boundary ofX4∗ . Similar to the Sperner mapping, the degree off4

restricted to the boundary ofX4∗ counts, for a fixed labelk ∈ I , the number of almost

completely labelled points on the boundary ofX4∗ with labelsI−{k}, counted by their

local orientation. The orientation on the boundary is induced by the orientation of the

boundary ofX4. This number is independent ofk. For eachk∈ I , there is exactly one

point on the boundary ofX4∗ with labelsI −{k}. The local orientation of this point

is +1 as it is contained in the face ofX4 spanned by−mv̂ei , i ∈ I−{k}. Alternatively,

one sees thatf4 restricted to the boundary is the identity, and hence its degree is+1

(for a detailed account of degree theory see e.g. Dold (1972) as cited on p. 72).
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Chapter 4

A Strategic Characterisation of the

Index

This chapter provides a new characterisation of the index for equilibria in

non-degenerate bimatrix games in terms of a strategic property. It is shown that an

equilibrium has index+1 if and only if one can add strategies with new payoffs to the

game such that the equilibrium is the unique equilibrium of the extended game.

Suppose one can add strategies to a game such that an equilibrium remains the

unique equilibrium of the extended game. Since the indices of equilibria of a game

have to add up to+1, it follows that the equilibrium must have index+1 in the

extended game. But the index only depends on the strategies played with positive

probability, so it follows that the index of the equilibrium in the original game also

equals+1. Hence, if one can extend the game such that the equilibrium becomes the

unique equilibrium of the extended game, the index of that equilibrium must equal+1.

Here it is shown that the converse is also true, i.e. if an equilibrium has index+1 then

one can add strategies such that the equilibrium becomes the unique equilibrium of the

extended game. This yields a new characterisation of the index purely in terms of a

strategic property.

The structure of this chapter is as follows. Section 4.1 shows the result for the

special case of pure strategy equilibria (Lemma 4.1) and motivates the general result

by examining particular examples. Section 4.2 provides some technicalities that are

also needed in Chapter 6. Section 4.3 shows that an equilibrium in a non-degenerate

89



bimatrix game has index+1 if and only if one can add strategies to the game such that

the equilibrium is the unique equilibrium of the extended game (Theorem 4.6). It turns

out to be sufficient to just add strategies for one player.

4.1 A Geometric Interpretation

The properties of the index imply that the index of an equilibrium is+1 if one can add

strategies such that the equilibrium becomes the unique equilibrium in the extended

game. The indices of equilibria of a game have to add up to+1. So the index of a

unique equilibrium in an extended game equals+1. But the index does only depend

on strategies played with positive probability, and hence the index of the equilibrium

in the original game equals+1.

Pure strategy equilibria in non-degenerate bimatrix games have index+1. For

these it is easy to see that they can be made the unique equilibrium in some extended

game.

Lemma 4.1 LetG be anm×n non-degenerate bimatrix game. Then every pure strat-

egy equilibrium of the game is the unique equilibrium in some extended game.

Proof. LetG be represented bym×n payoff matricesA andB. Without loss of general-

ity (otherwise one can reorder the strategies) assume that the pure strategy equilibrium

is given by player I playing strategy1 and player II playing strategym+ 1 (i.e. both

play their first strategy). Then add strategy with labelm+ n+ 1 for player II with

payoff column, for smallε > 0,



1,b11− ε

0,maxj=1,...,nb2 j + ε
...

0,maxj=1,...,nbm j + ε




. (4.1)

Then strategym+n+1 strictly dominates all other strategies except for strategym+1

of player II. Note thatb11 > b1 j for all j ∈ J, for j 6= 1. So strategiesj = m+2, . . . ,m+

n can be deleted. Thereafter, strategy1 strictly dominates all other strategies2, . . . ,m

of player I. By iterated elimination of strictly dominated strategies, only the strategy

pair (1,m+1) remains.

90



Adding strategies as in Lemma 4.1 alters the dual construction for the game. Take,

for example, gameH− as in (1.13). The game is given by

H− =




13,13 7,12 1,14

12,7 8,8 2,1

14,1 1,2 1,1


 .

This game has three equilibria. The mixed equilibrium with index−1 in which both

players play(1
2, 1

2,0), the pure strategy equilibrium with index+1 in which both play-

ers play(0,1,0), and the completely mixed equilibrium with index+1 in which both

players play(1
2, 1

12,
5
12). The labelled dual construction for the game is depicted on the

left in Figure 4.1.

Figure 4.1: An index+1 equilibrium inH−
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Now suppose the game is extended in the following way, so that only the pure

strategy equilibrium remains.

H̃− =




13,13 7,12 1,14 0,20

12,7 8,8 2,1 10,71
2

14,1 1,2 1,1 0,20


 .

The added strategy dominates strategies4 and6 of player II. So strategies4 and6 can

be deleted. Then strategy2 of player I is the best reply to both strategies5 and7, and

the best reply to strategy2 is 5. Thus the pure strategy equilibrium in which player I

plays strategy2 and player II plays strategy5 (with payoff 8 for both players) is the

unique equilibrium of the extended game.

Adding strategies changes the dual construction for the game. Consider the labelled

dual construction for the extension of the game (1.13), which is depicted on the right
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in Figure 4.1. The paths that start from the completely labelled point that represents

the pure strategy equilibrium lead directly to the boundary. In the original game some

paths in the dual construction lead to other equilibria of the game as shown on the left

in Figure 4.1. So, in order to make an index+1 equilibrium the unique equilibrium

of an extended game, the paths that start in the fully labelled point representing the

equilibrium have to be “re-routed” such that they connect directly with the boundary

of the dual construction, also not creating other equilibria (e.g. pairs of inaccessible

equilibria).

The idea of “re-routing” the paths is the main idea in the proof of Theorem 4.6

below. To give the reader an idea of the process, the procedure is first applied to ex-

amples before it is technically specified in the proof of Theorem 4.6. Take for example

the following game. 
1,3 0,2 1,0

0,0 1,2 0,3


 . (4.2)

Game (4.2) has 3 equilibria. The pure strategy equilibrium(1,0),(1,0,0) with in-

dex+1, the mixed equilibrium(2
3, 1

3),(1
2, 1

2,0) with index−1, and the mixed equilib-

rium (1
3, 2

3),(0, 1
2, 1

2) with index+1. The dual construction for this game is given on

the left in Figure 4.2 (the dots represent the vertices of the simplicesv4).

Figure 4.2: An index+1 equilibrium form= 2
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Now suppose one wants to make the equilibrium(1
3, 2

3),(0, 1
2, 1

2) the unique equi-

librium of an extended game. The dual construction shows how to achieve this. Add a

strategy6 for player II, covering the best reply region of strategy3 and a small part of

the best reply region of strategy4. This can, for example, be achieved by choosing the

payoff vector
(4

0

)
for player II. The new division ofX and its dual are depicted on the
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right in Figure 4.2. Then choose strategy2 to be the best reply to the new strategy6

by, for example, choosing the payoff vector
(0

1

)
for player I. Then(1

3, 2
3),(0, 1

2, 1
2,0) is

the unique equilibrium of the extended game

1,3 0,2 1,0 0,4

0,0 1,2 0,3 1,0


 . (4.3)

The orientation around an index+1 equilibrium in the labelled dual construction

agrees with the orientation ofX4. This allows one to “re-label” the regions in the

dual construction by adding strategies such that the index+1 equilibrium remains the

unique equilibrium in the extended game. For any2×n game the procedure is very

straightforward and easy. It can easily be verified that one only has to add at most two

strategies for player II to make any index+1 equilibrium the unique equilibrium in an

extended game.

In higher dimensions, the process of eliminating the other equilibria without cre-

ating new equilibria is more advanced. Consider, for example, the following3× 3

coordination game. 


10,10 0,0 0,0

0,0 10,10 0,0

0,0 0,0 10,10


 . (4.4)

Game (4.4) is the same as the gameH3 given by (1.16). All three pure strategy equi-

libria have index+1, the three mixed equilibria with two strategies as support have

index−1, and the completely mixed equilibrium has index+1 again. Making a pure

strategy equilibrium of (4.4) the unique equilibrium in an extended game is straight-

forward (see Lemma 4.1). So suppose one wants to make the completely mixed equi-

librium the unique equilibrium of some extended game. In order to do so, one first

has to cover the old equilibria with new strategies. This can be done, for example, by

adding strategies with labels7,8 and9 for player II as shown in Figure 4.3. In a neigh-

bourhood of the vertexv= (1
3, 1

3, 1
3)∈X, the structure of the best reply regions remains

unchanged. This implies that the simplexv4 containing the completely labelled point

remains unaffected by the added strategies. This first step determines the payoffs of

player II for the added strategies and gives a triangulation|X4| in which the original

simplexv4 and its division are as in the original game.
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Figure 4.3: A unique index+1 equilibrium in an extension of the coordination game
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Second, one has to choose the appropriate payoffs for player I. The right of Fig-

ure 4.3 shows how the paths starting in the corresponding dual of the equilibrium can

be “re-routed”. So the payoffs for player I are chosen in such a way that the almost

completely labelled points on the boundary ofv4 are connected with the respective

almost completely labelled points on the boundary of the dual. The game that corre-

sponds with the labelled dual on the right in Figure 4.3 is given by



10,10 0,0 0,0 0,11 10,5 0,−10

0,0 10,10 0,0 0,−10 0,11 10,5

0,0 0,0 10,10 10,5 0,−10 0,11


 . (4.5)

So, in order to prove that an index+1 is the unique equilibrium in some extended

game, one essentially has to show two things. First, that the paths can in fact be re-

routed. This is ensured by the index+1 condition. Second, one has to show that these

paths can actually be created by extending the game. This is to say that in the labelled

dual construction of the extended game the paths starting in the equilibrium connect

directly with the boundary. Adding columns to the payoff matrixB refines the mesh of

|X4|, and the payoffs for player I determine the paths.

4.2 Some Technical Requisites

The proof of Theorem 4.6 below is based on the approximation of a homotopy that

“re-routes” the paths. In order to show that the approximation of the homotopy can

be achieved by adding strategies, this section provides some technical results that are
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required in the proof of Theorem 4.6. These technical results are also used in the

characterisation of index zero outside option equilibrium components in Chapter 6.

Let4 be an(m−1)-simplex in a regular triangulation|4m−1 | of 4m−1 with no

vertices on the boundary of4m−1 other thanei , i ∈ I . Now consider an iterated refine-

ment of|4m−1 |−4 that is achieved by subsequently adding vertices to|4m−1 |−4,

allowing to add vertices on the boundary of|4m−1 | or4. Let the added vertices be

denoted asv1, . . . ,vN, where the subscript denotes the order in which the vertices were

added. Now add the simplex4. The resulting object is a division of|4m−1 | into

simplices that is not a triangulation of|4m−1 |. Such a division of|4m−1 | is referred

to as aniterated pseudo refinement. An illustration of an iterated pseudo refinement is

given in Figure 4.4.

Figure 4.4: An iterated pseudo refinement

∆

Lemma 4.2 Given an iterated pseudo refinement of4m−1, one can subsequently delete

those vertices that were added to the boundary of4 and4m−1 in order to obtain a

regular refinement of|4m−1 |.

Proof. Let v1, . . . ,vN be the set of vertices added to the triangulation, where the sub-

script reflects the order in which the vertices are added. LetΛ⊂ {1, . . . ,N} denote the

ordered subset for those vertices that were added to the boundary of4 or4m−1. Now

take the vertexvλ, for λ∈Λ, that is added last to the triangulation, and consider the iter-

ated pseudo refinement that is obtained by adding the set of vertices{v1, . . . ,vN}−{vλ}
in canonical order. Continuing with the second last vertex that was added to the bound-

ary of4 or 4m−1 and so forth, finally gives an iterated pseudo refinement with no

vertices added to the boundary of4 or 4m−1. Hence, the refinement achieved by

adding the set of vertices{v1, . . . ,vN}−{vλ | λ ∈ Λ} (in canonical order) is regular by

Lemma 3.12.
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Figure 4.5: The regular refinement obtained from the iterated pseudo refinement

v∆

The refinement that is obtained by the iterated pseudo refinement in Figure 4.4 is

depicted in Figure 4.5. The result of Lemma 4.2 extends in a straightforward way

to collections of simplices
S

i4i in a triangulation|4m−1 | and iterated pseudo re-

finements that are obtained by refining|4m−1 | −S
i4i . So every iterated pseudo

refinement yields a regular refinement by omitting those vertices that were added to

the boundary of
S

i4i or4m−1.

Now consider an iterated pseudo refinement of|X4|−v4. Vertices that were added

to the boundary ofX4 or v4 are referred to aspseudo vertices. Assign a payoff vector

Avi to each added vertexvi . If the added vertex is a pseudo vertex, then the payoff

vector is referred to as apseudo payoff vector. Each pseudo vertex̃v can be described

as a convex combination ofm−1 verticesv1, . . . ,vm−1 on the boundary ofX4 or the

boundary ofv4, i.e. ṽ = ∑m−1
i=1 µivi , with 1>mµ= 1 andµi ≥ 0.

Definition 4.3 The pseudo payoffs are calledconsistentif Aṽ = ∑m−1
i=1 µiAvi .

For each simplex in the pseudo refinement of|X4| − v4, the payoff vectors and

pseudo payoff vectors induce a division into labelled regions as described by (2.7),

where the columns of the payoff matrix consist of the payoff vectors and pseudo payoff

vectors that are assigned to the vertices of the simplex. This division is referred to as a

pseudo division.

Now consider the regular refinement induced by an iterated pseudo refinement. The

following lemma is similar to what was used in the proof of Corollary 3.13. That is, if

the pseudo vectors have consistent payoffs, then the induced division of|X4|−v4 into

labelled regions is unaffected by deleting the pseudo vectors from the iterated pseudo

refinement.
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Lemma 4.4 If the pseudo payoffs are consistent, then the pseudo division of|X4|−v4

into labelled regions is identical with the division of|X4| − v4 into labelled regions

that is obtained by deleting the pseudo vertices from the iterated pseudo refinement.

Proof. The proof is illustrated in Figure 4.6. The consistency of the payoff ensures

that the division of a larger simplex is given by the division of the smaller simplices.

In the figure, the payoff forv is consistent with the payoffs forv1 andv2. Then the

union of the simplices spanned by{v1,v2,v} and{v2,v3,v} yields the same division as

the simplex spanned by{v1,v2,v3}.

Figure 4.6: Pseudo vertices with consistent payoffs
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Let v denote the simplex that was last added to the face ofv4 or X4. Thenv =

∑k
i=1µivi , with 1>mµ = 1 andµi > 0, where the verticesvi span the(k−1)-simplex on

the (m−2)-face that containsv. These vertices might be original vertices or pseudo

vertices. In any case, one hasAv = ∑k
i=1µiAvi . Now deletev from the iterated pseudo

refinement. Consider a simplex4 spanned byv1, . . . ,vk and somevk+1, . . .vm. The

division of4 is induced by the payoff vectorsAv1, . . . ,Avm.

The simplex4 is the union of smaller simplices for which the vertexv replaces one

of the verticesvi , 1≤ i ≤ k, of4. Since the payoffs are consistent, the induced division

of4 into labelled regions is also the same as the union of the smaller simplices divided

into labelled regions.

Finally, one needs a topological lemma, which says that the payoff mappingf (as

in (3.3)) restricted to the boundary ofv4 can be deformed into a mapping that maps

the boundary ofv4 on the boundary of4m−1∗ .

Lemma 4.5 Letv4 be a simplex in|X4|. Then there exists a homotopyh that deforms

f (or f4) restricted to the boundary ofv4 into a mapping that maps the boundary
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of v4 on the boundary of4m−1∗ (or the boundary ofX4). The homotopy is such that

h(x, t) 6= v∗ ∀(x, t) ∈ ∂v4× [0,1].

Proof. Take a simplexv4 in |X4|, and let∂v4 denote its boundary. If the image ofv4

containsv∗, thenv∗ must lie in the interior off (v4). If the image does not containv∗,

thenv∗ must have a positive distance fromf (v4). This is due to the non-degeneracy

assumption.

Then one can retract the image of the boundaryf (∂v4) as follows: Letx be a

point on f (∂v4). Then take the line betweenx andv∗ in direction ofx, and define

the retractionr(x) as the point on the boundary of4m−1∗ in which the line intersects

with the boundary of4m−1∗ . Algebraically, the pointr(x) is the normalised form of

the vectorx− (mini∈Ixi) · 1m. The retractionr(x) can be described as a homotopy

h : ∂v4× [0,1] →4m−1∗ given byh(x, t) = t · r(x) + (1− t) · x. Note thath(x, t) 6=
v∗ ∀ (x, t) ∈ ∂v4× [0,1], sincex andr(x) have the same labels.

A deformation off restricted to∂v4 yields a deformation off4 restricted to∂v4,

since f4 = Id4 ◦ f .

Lemma 4.2 and 4.4 are needed in the proof of Theorem 4.6 below. In the proof,

a certain mapping is approximated. For this one needs to construct a triangulation

with a sufficiently small mesh. This can only be achieved by adding vertices to certain

boundary faces. However, if the payoffs are consistent, then these vertices can be

omitted, as it does not change the combinatorial division into best reply regions. In

particular, one obtains a regular triangulation and a division into labelled regions that

can be obtained as the dual construction for some bimatrix game. Lemma 4.5 is needed

to construct the mapping that is approximated.

4.3 A Game Theoretic Characterisation of the Index

This section proves the main result of this chapter, i.e. an equilibrium in a game has

index+1 if and only if one can add strategies to the game such that the equilibrium

becomes the unique equilibrium in the extended game. The idea of the proof is to “re-

route” the paths as described earlier. Say(v,w) is an equilibrium. In the labelled dual
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construction, this equilibrium is represented by somews∈ v4. In particular, if the in-

dex of the equilibrium is+1, the dual payoff mappingf4 restricted to the boundary of

v4 has also degree+1. By a well-known result from algebraic topology,f4 restricted

to the boundary ofv4 and f4 restricted to the boundary of theX4∗ are homotopic

via some homotopyh. This allows one to “re-route” the paths starting inws so as to

connect them directly with the boundary without creating new equilibria.

Theorem 4.6 Let G be some non-degenerate bimatrix game. Let(v,w) ∈ X×Y be an

equilibrium of the game. Then(v,w) has index+1 if and only if one can add finitely

many strategies such that(v,w) is the unique equilibrium of the extended game. It

suffices to add strategies for only one player.

Proof. Let (v,w) ∈ X×Y be an equilibrium of the game. First, all unplayed strategies

of player II can be eliminated by new strategies that dominate them. If pure strategy

j ∈ J is not played in equilibrium, one can add a pure strategyj ′ with payoff B j + ε,

whereε ∈ Rm is a vector with small positive entries. This replaces the original vertex

in |X4| representing strategyj with a vertex representing the new strategyj ′. In the

dual polytopeP4, this corresponds to adding a vertex to the boundary ofP4 that lies

slightly above the original vertex. This yields the same regular triangulation|X4| as

before.

Now consider the boundary ofv4. Without loss of generality assume that all pay-

offs for player I are positive and that the payoffs in the columns ofA add up to 1, i.e.

|A j | = 1 for j ∈ J as assumed in the construction off4. Let (v,w) be an equilibrium

and consider the restriction off4 to v4. Denote this restriction asf4|v4.

The degree of the equilibrium is given by the local degree off4|v4 around the com-

pletely labelled pointws, wherews denotes the lifted point ofw. The local degree is

the same as the degree off4|v4 restricted to the boundary ofv4, denoted asf4|∂v4, and

has degree+1. The degree off4 restricted to the boundary ofX4, denoted asf4|∂X4,

is also+1. Considering the payoff mappingf instead of the dual payoff mapping, this

implies thatf|∂v4 and f|∂X4 are homotopic (see e.g. Spanier (1966, 7.5.7)). First retract

f|∂v4 to the boundary of4m−1∗ as shown in Lemma 4.5, then deform it intof|∂X4 along

∂4m−1∗ . The construction is such that no point along the homotopy is mapped onv∗.
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Denote this homotopy ash. The homotopyh is given ash : ∂4m−1×[0,1]→4m−1∗
such thath(·,0) = f|∂v4 andh(·,1) = f|∂X4. If v4 shares a commonk-face withX4

(i.e. not all strategies of player I are played with positive probability inv), then the

mappingsf|∂v4 and f|∂X4 agree on that face by construction, and it can be assumed

thath(x, ·) = f|∂v4(x) for pointsx on that face.

But this gives a mapping, also denoted ash, on the spaceX4−v4 that agrees with

f on the boundaries ofX4 andv4 and whose image does not containv∗. So

h : X4−v4 −→4m−1
∗ . (4.6)

This yields a division ofX4−v4 into labelled regions such that no point is com-

pletely labelled. The regions are defined as the pre-images of the regions in4m−1∗ . The

division of v4 is as before. This is depicted in Figure 4.7 for the equilibrium(v1,w1)

in the game of Example 2.3.

Figure 4.7: A homotopy
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Now consider the triangulation|X4|, and consider an iterated pseudo refinement of

|X4|−v4. This iterated pseudo refinement can be assumed to be such that no simplex

has a diameter more than someδ > 0 (see Lemma 3.11). Now assign payoffs for

player I to the added vertices according toAv = h(v). If the simplices are small, their

images in4m−1∗ are also small simplices (h is uniformly continuous), and no simplex

containsv∗. This is depicted in Figure 4.8.

The pseudo payoffs for vertices that were added to the boundaries ofX4 andv4

are consistent with the payoffs for the vertices ofX4 andv4. Therefore, these vertices

can safely be omitted without creating fully labelled points according to Lemma 4.4,

and the resulting refinement is regular by Lemma 4.2. This refinement is a regular
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triangulation and can be achieved by a payoff matrix where strategies for player II are

added (Lemma 3.12). The refinement determines the payoffs for player II. The payoffs

for player I are given by the homotopyh.

Figure 4.8: An approximation of the homotopy
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In the proof of Theorem 4.6, the simplices in the refinement are chosen to be suffi-

ciently small since the homotopyh is not further specified. It is likely that, in the case

of the payoff mappingf , one can easily describe the deformation off restricted to the

boundary, especially if considering the combinatorial aspects of the problem (instead

of describing it as a topological problem). Furthermore, one is not necessarily bound

to refining|X4|, but can actually create a new regular triangulation that leaves the sim-

plex v4 unaffected. So, instead of adding sufficiently many strategies, it is likely that

“a few” added strategies are enough.

As for the equilibrium(v1,w1) of the game in Example 2.3, it is sufficient to just

add one strategy instead of many as suggested by Figure 4.8. The game described

below only has the equilibrium(v1,w1) as a unique equilibrium.



0,0 10,10 0,0 10,−10 0,11

10,0 0,0 0,10 0,8 1,1

8,10 0,0 10,0 8,8 0,1




Figure 4.9 depicts the corresponding labelled dual for the extended game.

So the natural question arises about the minimal number of strategies one needs to

add in order to make an equilibrium the unique equilibrium of an extended game. In

the2×n player case, it is sufficient to just add two strategies for player II to make any
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Figure 4.9: The labelled dual for an extension of the game in Example 2.3
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index+1 equilibrium the unique equilibrium of an extended game. Whether addingm

or 2mstrategies suffices in higher dimensions is unclear.

Remark 4.7 Instead of considering the homotopyh on X4− v4, one can actually

define it on the “cylinder” that is obtained by deletingX4 andv4 from the surface of

the polar polytopeP4 that corresponds to the game.

Hofbauer (2000) defines two pairs(G,(v,w)), (G′,(v′,w′)), where(v,w) is an equi-

librium of G, and(v′,w′) is an equilibrium ofG′, equivalent if the gameG restricted

to the support of(v,w) is the same as the gameG′ restricted to the support of(v′,w′).

He calls an equilibrium(v,w) of a gameG sustainable if there exists an equivalent pair

(G′,(v′,w′)) such that(v′,w′) is the unique equilibrium ofG′. He conjectures that an

equilibrium has index+1 if and only if it is sustainable. The results from above prove

this conjecture in the case of non-degenerate bimatrix game.
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Chapter 5

Outside Option Equilibrium

Components

The aim of this chapter is to extend the dual construction to outside option equilibrium

components. This yields a new interpretation of the index for outside option equilib-

rium components that is very similar to a generalisation of Sperner’s Lemma which

is in the literature referred to as theIndex Lemma(see e.g. Henle (1994), p. 47). The

Index Lemma applies to more general boundary conditions, and states that the sum of

orientations of completely labelled simplices can be deduced from the boundary con-

dition. This new approach allows a new characterisation of index zero outside option

equilibrium components in bimatrix games, which is the subject of Chapter 6.

An outside option can be thought of as an initial move that a player can make

which terminates further play, and gives a constant payoff to both players. If the player

has not chosen his outside option, the original game is played. Take for example the

game described in (1.15) in Chapter 1. A representation of the gameG2 is given in

Figure 5.1, where the bottom left entries in a cell are the payoff for player I and the

top right entries in a cell are the payoffs for player II. This game has two equilibrium

components: The single equilibrium ofH− with payoff 10 to both players, and the

outside option equilibrium component with payoff9 for player II and payoff0 for

player I.

In terms of forward inductionthe only reasonable equilibrium is that with pay-

off 10. Not playingOut in the first place is only reasonable if player II plays the equi-
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Figure 5.1: A representation of an outside option game
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librium strategy that yields payoff10in H−. Player I knows this and plays accordingly

once the gameH− is entered. The notion of forward induction is a concept that applies

to extensive form games (van Damme (1989)). Other authors, in particular Kohlberg

and Mertens (1986), argue that games should be analysed in their normal form and that

solution concepts should be independent of the representation of the game. The index

of an equilibrium component is an invariant, i.e. the same in all equivalent games and

hence independent of the representation of the game. Therefore, understanding the na-

ture of the index for outside option equilibrium components can help in understanding

which solution concepts might capture the notion of forward induction (see e.g. Hauk

and Hurkens (2002)). In Chapter 6, it is shown that an outside option equilibrium com-

ponent is hyperessential if and only if it has non-zero index. It follows that an outside

option outcome cannot be hyperessential if the forward induction equilibrium is a pure

strategy equilibrium that is strict (that is, all unplayed pure strategies have a payoff that

is strictly lower than the equilibrium payoff).

The structure of this chapter is as follows. Section 5.1 reviews a generalisation

of Sperner’s Lemma which is sometimes referred to as the Index Lemma (Proposi-

tion 5.2). In Section 5.2 it is shown how this relates to outside option equilibrium

components (Corollary 5.4). Section 5.3 discusses potential generalisations and the

apparent limitations of the dualisation method regarding general components of equi-

libria.
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5.1 A Generalised Version of Sperner’s Lemma

In Sperner’s Lemma, the existence of a completely labelled simplex is ensured by the

Sperner condition. Moreover, accounting for the orientation, the boundary condition

determines that there exists one more completely labelled simplex with orientation+1

than with orientation−1. In this section, it is shown how Sperner’s Lemma can be

extended to cope with more general boundary conditions. This yields a generalisation

of Sperner’s Lemma that is in the literature referred to as the Index Lemma (see e.g.

Henle (1994, p. 47)).

Let P be an(m−1)-dimensional polytope. Furthermore, let|P| be a triangulation

of P into simplices of dimensionm−1. A triangulation ofP is a finite collection of

simplices whose union isP, and that is such that any two of the simplices intersect in

a face common to both, or the intersection is empty. A triangulation ofP induces a

triangulation|∂P| of the boundary∂P into simplices of dimensionm−2. Let L be a

labelling of the vertices of|P| with labels inI = {1, . . . ,m}. As before, one can define

a Sperner mapping

f S : (|P|, |∂P|)−→ (4m−1
∗ ,∂4m−1

∗
)
,

where4m−1∗ denotes the canonical division described in Chapter 3 (see Definition 3.4):

Every vertex of|P| is mapped to the vertex in4m−1∗ with the corresponding label, i.e.

L(v) = L( f S(v)). Then f S is obtained by linearly extending it to the simplices in|P|.
Note that if a(k−1)-simplex hasj ≤ k distinct labelsI j ⊂ I , then it is mapped on the

( j−1)-face of4m−1∗ that is spanned by the vertices with labelsI j . The restriction of

f S to the boundary ofP is denoted asf S
|∂P.

Definition 5.1 The index of the labellingL of |P| is defined as

I(L) = deg f S
|∂P , (5.1)

wheredeg f S
|∂P denotes the degree of the mappingf S

|∂P.

As for the Sperner case, the degreedeg f S
|∂P measures, for an arbitrary but fixed label

k ∈ I , the number of almost completely labelled points with labelsI − {k} on the

boundary, where each such point is counted with its orientation. The orientation on

the boundary is induced by4m−1∗ . This is depicted in Figure 5.2. The dotted line

105



represents the image of the boundary∂P “around”∂4m−1∗ . The mapping in Figure 5.2

has degree+1. The image of the boundary is homotopic to a single winding around

4m−1∗ . So the index of the labelling in Figure 5.2 is+1.

Figure 5.2: A general version of Sperner’s Lemma
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The degreedeg f S
|∂P on the boundary is the same as the degreedeg f S of the map-

ping f S. The proof of this claim is equivalent to the construction in the proof of The-

orem 3.3. There, the orientations of(m− 2)-faces in the interior cancel out. The

degreef S measures the number of completely labelled points, i.e. the pre-images of

v∗, where each pre-image is counted with its orientation, which is the local degree (see

Figure 5.2). This fact thatdeg f S
|∂P is the same asdeg f S yields the following, well-

known result, which says that the labelling of the vertices on the boundary determines

the number of completely labelled simplices in the triangulation (for a detailed account

of degree theory see e.g. Dold (1972) as cited on p. 72).

Proposition 5.2 (Index Lemma) Let |P| be as above with labellingL. Then the sum

of orientations of the completely labelled simplices in|P| equalsI(L).

Proof. The pre-images ofv∗ correspond to the completely labelled simplices, and the

local degree at a pre-image is the same as the orientation of the simplex that contains

it. The degree equals the sum of local degrees, and is determined by the boundary

condition.

Alternatively, one can use the same approach as in the proof of Theorem 3.3 to

obtain the result without using degree theory. In this case, one would essentially show

thatdeg f S
|∂P on the boundary is the same as the degreedeg f S.
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The Index Lemma is sometimes summarised with the phrase “The index equals the

content” (see e.g. Henle (1994, p. 47)), meaning that the boundary condition (i.e. the

index) determines the number of completely labelled simplices in the triangulation (i.e.

the content), accounting for orientation. In the next section, it is shown that a similar

description applies to outside option equilibrium components.

5.2 The Index for Outside Option Equilibrium Compo-

nents

In Chapter 3 above it is shown how the classical Sperner condition applies to equilibria

in non-degenerate bimatrix games. This section demonstrates how the Index Lemma

relates to components of equilibria. The dual construction shows that the index of a

component is defined by a boundary property similar to the Index Lemma. This bound-

ary property determines the sum of indices of equilibria close to the component if the

game is generically perturbed by small generic perturbations. In particular, it is shown

that the sum of indices of equilibria close to the component is independent of the per-

turbation. This “invariance” property of the index for components of equilibria is not a

new result (see the properties for components of equilibria listed in Section 1.3). What

is new, however, is the geometric-combinatorial view on the index for components of

equilibria.

The analysis is restricted to generic outside option equilibrium components in bi-

matrix games represented in strategic form by payoff matricesA andB. Without loss

of generality it is assumed that the player with the outside option is player II. When

player II plays the outside option, the payoffs for player I and player II are independent

of player I’s strategy choice. So the column ofA that represents the payoffs for player I

in the outside option has identical entries, and so has the column ofB that represents

the payoffs for player II in the outside option. An outside option equilibrium compo-

nent is referred to asgenericif the payoffs for player II are generic and if all payoffs for

player I other than the outside option payoffs are generic. Thus the only degeneracy of

the game arises through the payoffs to player I in the outside option. This implies that

107



the payoffs for the equilibria that are cut off by the outside option are strictly smaller

than the payoff in the outside option.

When constructing components of equilibria via outside options (see Section 1.4),

it is possible to compute the index of such components purely on grounds of basic

properties of the index. In particular, one does not have to go into details regarding the

geometric-combinatorial aspects. These aspects, nevertheless, play an important role

in the characterisation of index and (hyper)essentiality in Chapter 6. The examples

given below are meant to illustrate the geometry behind the index for outside option

equilibrium components by means of the labelled dual constructionX4∗ . A formal

definition is given later in this section.

The problem with degenerate games is that, instead of having singleton solutions,

one has to consider components of equilibria. This is due to the fact that the number

of best reply strategies is not bounded by the size of the support (see Definition 1.1).

In the case of an outside option in anm×n bimatrix game with an outside option for

player II, the pure strategy representing the outside option for player II hasmpure best

reply strategies since all the payoffs for player I are the same in the outside option. In

this case, the outside option equilibrium componentC is given by

C = {(x,Out) ∈ X×Y |Out is best reply tox},

whereOut denotes the pure strategy that represents the outside option.

In general, the dual construction cannot be applied to degenerate games. This is

due to the fact that|X4| is not well-defined if the payoff matrixB is degenerate. In

the case of generic outside options in bimatrix games, however, the payoff matrixB

is generic, since it does not matter if a column ofB has identical entries. This allows

one to apply the dual construction to such games. Consider, for example, the following

3×4 coordination game with an outside option for player II:



10,10 0,0 0,0 0,9

0,0 10,10 0,0 0,9

0,0 0,0 10,10 0,9


 . (5.2)

This is the same gameG−2 in (1.17) in Chapter 1. The outside option equilibrium

component has index−2. The three pure strategy equilibria of the game with payoff
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10 (which are not cut off by the outside option) each have index+1. Since the sum of

indices over all equilibrium components must equal+1, the outside option equilibrium

component has index−2. This can be interpreted geometrically in the following way.

Label the strategies of player I with1,2 and3, and those of player II with4,5,6 and

Out. Then apply the dual construction toX to obtainX4∗ . Figure 5.3 shows the division

of X into best reply regions on the left. Next to it is the corresponding labelled dual

constructionX4∗ . StrategyOut yields a constant payoff to player I. Therefore, the best

reply regions in simplicesv4 for which a vertex ofv4 representsOut all join in the

vertex that representsOut.

Figure 5.3: An outside option component with index−2
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The dual payoff mappingf4 as in (3.4) is, however, well-defined onX4, including

those simplices that are the duals of the vertices of the best reply region forOut. In

particular, the dual payoff mappingf4 is well-defined on the boundary of the dual of

the outside option component.

Thedual of the outside option componentis the union of all those simplices that are

the duals of the vertices of the best reply region forOut. These are the simplices that

haveOut as a vertex. The vertex that representsOut has all labels, since every strategy

of player I is a best reply againstOut. In particular, the completely labelled point

does not lie in the interior of a simplex, which would be the case for non-degenerate

bimatrix games. This is depicted on the right in Figure 5.3.

The dual of the component can now be used to define the index of an equilibrium

component. For this, consider the dual payoff mapping restricted to the boundary of

the dual of the component. For the example in Figure 5.3, the image off4 restricted

to the boundary cycles twice around the completely labelled vertexv∗, but in opposite

direction: Following the boundary of the component in anti-clockwise direction in
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X4∗ , the resulting paths runs in clockwise direction aroundv∗. Hence, the index of

the component is−2. As in the case of the Index Lemma, the index counts, for a

fixedk∈ I , the number of almost completely labelled points with labelsI −{k} on the

boundary of the dual of the component, where each such point is counted by is local

orientation. For the example in Figure 5.3, there are two points on the boundary of the

dual of the component with labels1,3, both of which are oriented in the opposite way

as the point with labels1,3 on the boundary ofX4. The same holds when considering

points with labels1,2 or 2,3.

As another example, consider the3×4 game with an outside option for player II

as shown below. 


13,13 7,12 1,14 0,9

12,7 8,8 2,1 0,9

14,1 1,2 1,1 0,9


 . (5.3)

This is the gameG+2 (1.15) as in Chapter 1. The outside option has, by the same rea-

soning as before, index+2. Figure 5.4 depicts the division ofX into best reply regions

Figure 5.4: An outside option component with index+2
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and the dual constructionX4∗ for this game. For the above example, the mappingf4

restricted to the boundary of the dual of the component yields a path running twice

aroundv∗. This time, the orientations of the boundary and its image agree. For every

k∈ I = {1,2,3}, there are exactly two points on the boundary of the dual of the com-

ponent with labelsI−{k} and whose orientation is the same as that of the point on the

boundary ofX4 with labelsI −{k}. Therefore, the index of this component is+2.

These observations can be formalised as follows. Consider anm×n bimatrix game

with an outside option for player II. Note that it is not necessary to assume thatm≤ n.

Let C denote the outside option equilibrium component. LetV be the set of those
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vertices in player I’s strategy spaceX that haveOut as a best reply, soV = {v ∈ V |
Out∈ L(v)}. Now take the union of thosev4 for whichv∈V, soC4 =

S
v∈V v4. This

union is referred to as thedual of the componentC or thedual of the outside option

equilibrium component. For generic outside options, the regionX(Out), i.e. the region

in X whereOut is a best reply, is a full-dimensional and convex region with vertices

that havem labels (or it is empty). Hence, the setC4 is a union of(m−1)-simplices.

These simplices yield a triangulation ofC4. If vOut denotes the vertex inC4 that

represents the best reply region with labelOut, thenC4 is star-shaped with respect to

vOut. This follows from the fact thatC4 is a union of simplices who all havevOut as a

vertex.

The boundary ofC4 is denoted as∂C4. The simplexv4 is an(m−1)-simplex for

all v∈ V, and the boundary∂C4 is the union of the(m−2)-faces inC4 that do not

include the vertex that representsOut. From the dual construction it follows that the

pair
(
C4,∂C4

)
is homeomorphic to

(4m−1,∂4m−1
)
. The dual payoff mappingf4 as

in (3.4) is well-defined on the boundary∂C4. The restriction off4 to the boundary of

C4 is denoted asf4|∂C4. The image off4|∂C4 consists of the union of(m−2)-simplices

in X4 that are spanned by the images of vertices of the(m−2)-faces on the boundary

of C4. The image off4|∂C4 itself does not containv∗. So the image off4|∂C4 can be

thought of as some(m−2)-sphere aroundv∗ that consists of(m−2)-faces.

Definition 5.3 Let C be an outside option equilibrium component of a game with a

generic outside option. Then the indexI(C) of the componentC is defined as the

degree of the mappingf4|∂C4.

So, as in the Index Lemma, the index is defined by the division of a boundary into

labelled regions. In the Index Lemma, the regions arise from the mappingf S, defined

by unit vectors on each(m−2)-face. In the game theoretic context, the regions arise

from the mappingf4, defined by a mixture of payoff vectors and unit vectors. As

in the Index Lemma, however, the index of a component measures, for a fixed label

k, the number of almost completely labelled points on the boundary of the dual of the

component. Each such point is counted with its local orientation, and the measure does

not depend on the choice ofk.
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Note that the image off4|∂C4 can be retracted to the boundary ofX4. This works

in the same way as Lemma 4.5: Ifp is a point in the image off4|∂C4, define the re-

traction as the intersection of the line betweenv∗ andp, in the direction ofp, with the

boundary ofX4. Note thatv∗ does not lie in the image off4|∂C4. This is due to the

non-degeneracy of the payoffs representing other strategies thanOut.

For generic outside options, only payoff perturbations for player I in the outside

option are of relevance. This can also be seen using the labelled dual construction.

Small perturbations of the payoff matrixB leave the combinatorial structure of|X4|
invariant, since the combinatorial structure of the best reply regions inX is unaffected.

Small perturbations of the payoff matrixA leave the combinatorial division of∂C4

into best reply regions invariant, since for all simplicesv4 and their faces that do not

involveOut, the combinatorial division into best reply regions is invariant with respect

to small perturbations. It follows from Definition 5.3 that small perturbations of the

payoffs leave the indexI(C) invariant. Perturbations of player I’s payoffs in the outside

option, however, splitC4 generically into labelled regions and determine those points

in the interior ofC4 that are mapped tov∗. These are the Nash equilibria that “survive”

perturbations of the payoffs.

The local degree off4 at these pre-images is the index of the equilibrium (see

Lemma 3.15). But the sum of local degrees equals the degree of the mapping, which

is again the same as the degree off4 restricted to the boundary of the dual of the

component. As a consequence, one obtains the following, well-known result.

Corollary 5.4 Let the index of a generic outside option equilibrium component be

I(C). Then every small generic perturbation yields equilibria close to the component

C such that the indices of these equilibria add up toI(C).

Proof. The proof follows the same lines as the proof of the Index Lemma, and is a

consequence of the fact that the degree of a mapping is the same as the degree of a

mapping restricted to its boundary.

An illustration of the proof is given in Figure 5.5 for a perturbation ofG−2 as in

(1.17) (compare Figure 5.3). The perturbation that is depicted is given by the payoff

vector(ε,0,0)> for player I in the outside option. For the illustration,ε is chosen to

be large. It should be noted, however, that the combinatorial division of the dual of the
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component does not depend on the magnitude ofε (see also Lemma 6.4 in Chapter 6).

Figure 5.5: A perturbation of an index−2 component
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The combinatorial and geometric properties of the mappingf4|∂C4 are not affected

by small perturbations. Generic perturbations, however, perturb the dual payoff map-

ping f4 in the interior ofC4. Let the restriction off4 toC4 be denoted asf4|C4. Thus

every small generic perturbation of the game gives a mappingf4|C4 : C4 −→ X4. Al-

though the mapping itself does depend on the perturbation, the indexI(C) does not,

since the degree off4|∂C4 stays invariant under small perturbations for the reasons ex-

plained above. The payoff perturbation renders the game generic and, hence, yields a

generic division ofC4 into labelled best reply regions (see Figure 5.5).

The degree off4|C4 is the same as the degree off4|∂C4, and can be computed as the

sum of local degrees at the pre-images ofv∗ in C4. These are the completely labelled

points inC4 that represent equilibria in whichOut is played with positive probability.

This local degree is the same as the index of an equilibrium.

Since the perturbation is generic, these pre-images lie in the interior of somev4 in

C4 and, for small perturbations, lie close to the vertex that representsOut.

For example, in Figure 5.5 one obtains two completely labelled points that read

1,2,3 in clockwise direction, i.e. both have index−1. As noted above, Figure 5.5

depicts the case for a largeε. For a smallε, the completely labelled points lie close to

the original vertex representingOut, but the combinatorial division stays invariant.
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Corollary 5.4 is of course not a new result (see Section 1.3). New, however, is

how it relates to the Index Lemma. In the Index Lemma, the index was defined as

the degree off S on the boundary. For outside options it is the degree off4 on the

boundary of the dual of the component. Althoughf S arises from unit vectors while

f4 arises from general payoff vectors, in both cases the division of the boundary into

labelled regions determines the sum of orientations of completely labelled points (or

simplices) in the interior. As for the Index Lemma, one can summarise the result under

‘The index equals the content”. The boundary condition (i.e. the degree of the mapping

on the boundary of the dual of the component) determines the number of completely

labelled points in the interior of the dual of the component (i.e. the Nash equilibria that

useOut), accounting for orientation.

5.3 Degenerate Games and General Equilibrium Com-

ponents

This section describes how the dual construction might be applied to other components

of equilibria. For example, the above analysis does not require that the payoffs for

player II in the component are constant and independent of player I’s strategy choice

(as it is the case for outside options). Nevertheless, there are limits to the application

of the dual construction to general components of equilibria in degenerate bimatrix

games.

Take anm×n bimatrix game. If the payoffs for player II are non-degenerate, the

triangulation|X4| is well-defined. Furthermore, the dual payoff mappingf4 in (3.4)

is well-defined since the payoff mappingf is well-defined. It is easy to verify that

the Nash equilibria correspond with those points that are mapped tov∗ under f4. So

the Nash equilibria still correspond to completely labelled points. This follows from

the definition of the payoff mappingf as in (3.3) via the artificial payoff matrix. The

difference is that completely labelled points might, for example, lie on the boundary of

a simplexv4, or that almost completely labelled points lie on some lower dimensional

k-face of somev4 for k < m− 2. Also, there can be connected sets of completely

labelled points in the labelled dual construction.
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The latter case is illustrated by the following example.



0,0 10,10 0,0 0,−10

0,0 0,0 0,10 0,8

0,10 0,0 10,0 0,8


 (5.4)

This is a variant of Example 2.3. Against strategies4 and7 of player II, player I is

indifferent between strategies1,2 and3. So the equilibrium component here is for

player I to play some strategy in the union of the best reply regionsX(4) andX(7), and

for player II to play a best reply strategy, which is either strategy4 or 7, or a mixture of

both. In the latter case, the strategy of player I lies in the intersection of the best reply

regionsX(4) andX(7), and player II can play any mixture between strategies4 and7.

The dual of this component is depicted in Figure 5.6, in which the union of the

best reply regionsX(4) andX(7) is represented by a dashed line between the vertices

that represent the best reply regions with labels4 and7. The mappingf4 is well-

defined. In particular, it is well-defined on the boundary of the dual of the component

C, and has degree zero: There is no point on the boundary of the dual of the component

with labels2,3, and there are exactly two points on the boundary with labels1,2, and

exactly two points with labels1,3. Each such pair of points is such that one almost

completely labelled point has the opposite orientation of the other almost completely

labelled point.

Hence, every (small) perturbation that makes the payoffs of player I generic yields

a game with equilibria involving strategies4 or 7 and whose indices add up to zero.

Take, for example, the original game as in Example 2.3. This game is a perturbation

of player I’s payoffs in strategies4 and7, and has two equilibria using strategies with

labels4 or 7 and whose indices add up to zero. Multiplying the columns ofA repre-

senting strategies4 and7 with some small constantε > 0 yields a game with the same

combinatorial properties that is close to the original game (see also Lemma 6.4).

The problem is that, in general, degeneracies occur in the payoff matrices of both

players. Furthermore, components (and hence their duals) are not necessarily homeo-

morphic to some simplex. This limits the direct application of the dual construction

to general components of equilibria. Consider, for example, the following game con-
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Figure 5.6: The dual of the component in (5.4)
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structed by Kohlberg and Mertens (1986):



1,1 0,−1 −1,1

−1,0 0,0 −1,0

1,−1 0,−1 −2,−2


 (5.5)

In this example, the equilibrium component is a cycle, both in player I’s as well as

in player II’s strategy space. It can easily be verified that the component in (5.5) has

index +1. It is the unique component, and strategies1 and4 weakly dominate the

other strategies, so a slight perturbation only leaves one pure strategy equilibrium. The

dual construction cannot be applied directly, since neither the “vertices” inX nor the

“vertices” in Y are well-defined, i.e. they have more than three labels. For example,

the “vertex” corresponding to pure strategy1 by player I has labels2,3 (the unplayed

strategies) and4,6 (best replies). Thus neitherX4 norY4 are well-defined.

Nevertheless, there are ways of still applying the dual construction to such compo-

nents. Take anm×n bimatrix game (withm≤ n). Then the payoffs for, say, player II,

can be made non-degenerate by small payoff perturbations. Then|X4| is well-defined

for the perturbed payoff matrixB. This then yields the mappingf4 and a division of

|X4| into labelled regions. The drawback of this approach is that the dual construction

|X4| and hencef4 are not independent of the payoff perturbations used for player II.
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Chapter 6

Index Zero and Hyperstability

This chapter shows that outside option equilibrium components that have index zero

are not hyperessential. This yields a characterisation of hyperessentiality of outside

option equilibrium components in terms of the index: An outside option equilibrium

component is hyperessential if and only if it has non-zero index. In a parallel and

independent work, Govindan and Wilson (2004) show that the result presented here for

outside option equilibrium components also holds for general equilibrium components

in N-player games. The merit of the approach presented here is that it requires only

basic tools from algebraic topology and provides a geometric intuition.

An equilibrium component is said to beessentialif for every small perturbation of

the game there exists an equilibrium of the perturbed game that is close to the compo-

nent (Wu and Jiang (1962); Jiang (1963)). Kohlberg and Mertens (1986) extend the

concept of essentiality to perturbations of all equivalent games, i.e. games obtained by

adding convex combinations of existing strategies as pure strategies. A component is

referred to ashyperessentialif it is essential in all equivalent games. They define a

component that is a minimal hyperessential component ashyperstable.

This chapter addresses the question how (hyper)essentiality in a game theoretic

context and essentiality in a topological context (i.e. non-zero index) are linked (see

e.g. Govindan and Wilson (1997a;b) for a discussion). It is a well-established fact

that topological essentiality implies strategic essentiality. The converse, however, is

not true, as an example of an equilibrium component with index zero that is essential

shows (Hauk and Hurkens (2003)). However, until recently, it was unknown whether
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hyperessentiality implies topological essentiality. This question is answered affirma-

tively for outside option equilibrium components in bimatrix games by employing the

dual construction to outside option components.

The structure of this chapter is as follows. Given the similarities between the Index

Lemma and the index for outside option equilibrium components, Section 6.1 studies

index zero labellings in case of the Index Lemma. It is shown that for every index zero

boundary labelling there exists a triangulation and a labelling (subject to the division

on the boundary) such that the triangulation does not contain a completely labelled

simplex (Theorem 6.1). Section 6.2 reviews the concepts of essentiality and hyper-

essentiality, and it is shown how the results for index zero labellings apply to index

zero outside option equilibrium components. It is shown that an outside option equi-

librium component is hyperessential if and only if it has non-zero index (Theorem 6.7).

The result is based on duplicating the outside option, which yields a refinement of the

triangulation of the dual of the component. This allows one to divide the dual of the

component into labelled regions such that no point is completely labelled. This work

concludes with Section 6.3. It gives an example of an outside option equilibrium com-

ponent that is essential in all equivalent games that do not contain a copy of the outside

option (Lemma 6.10).

6.1 Index Zero Labellings

This section discusses index zero labellings for triangulations of(m−1)-dimensional

polytopesP. Given a triangulation of|∂P| into (m−2)-simplices with a labellingL of

the vertices of|∂P|, the definition of the index as in Definition 5.1 is well-defined via

the Sperner mappingf S. The Index Lemma implies that every labelled triangulation

of P that agrees with the given triangulation and labelling on∂P must contain com-

pletely labelled simplices whose orientations add up to the index of the labelling on

the boundary. This section shows that if the boundary labelling on∂P has index zero,

then there exists a labelled triangulation ofP that agrees with the given triangulation

and labelling on∂P and that does not contain a completely labelled simplex.
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Let P be an(m−1)-dimensional polytope. Furthermore, let|∂P| be a triangulation

of ∂P into (m− 2)-simplices together with a labelling of the vertices of|∂P|. This

defines the Sperner mappingf S on the boundary∂P as in (3.1). The index of the

boundary labelling is defined as the degree off S restricted to the boundary and counts,

for a given labelk ∈ I , the almost completely labelled points on the boundary with

labelsI −{k}, accounting for their orientation. The following results for labellings as

in the Index Lemma might not be new (Theorems 6.1 and 6.3). The author, however,

is not aware of results as stated below in the literature.

Theorem 6.1 Let |∂P| be a labelled triangulation of∂P into (m− 2)-simplices with

index zero. Then there exists a labelled triangulation|P| that agrees with the given

labelled triangulation of the boundary and that does not contain a completely labelled

simplex.

Proof. Let f|∂P denote the restriction off S to the boundary. The fact thatdeg f S
|∂P = 0

implies thatf S
|∂P is homotopic to some constant map via a homotopyh (see e.g. Bredon

(1994, II, Corollary 16.5 and V, Lemma 11.13)). This means thatf S'h ?, where?

denotes some constant map. In other words, there exists a mappingh : ∂P× [0,1]→
∂4m−1∗ such thath(x,0) = f S(x) andh(x,1) = ? for all x ∈ ∂P. Sinceh is constant

on ∂P×1, one obtains a mapping, which is also denoted ash, from ∂P× [0,1]/∼(·,1)

to ∂4m−1∗ , where∂P× [0,1]/∼(·,1) denotes the quotient space that is generated by the

equivalence relation that identifies(·,1) with a single point; the space∂P× [0,1]/∼(·,1)

can be thought of as a “cone” over∂P, which is homeomorphic toP.

Figure 6.1: The cone over∂P

This is depicted in Figure 6.1 forP being the2-dimensional disk. The boundary of

the disk is the1-dimensional sphereS1. ThenS1× [0,1] is a cylinder as depicted on the
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left. Identifying (·,1) with a single point yields the “cone” as depicted in the middle,

which is homeomorphic to the2-dimensional disk depicted on the right.

Thush can be seen as a mappingh : P−→ ∂4m−1∗ that agrees withf S on the

boundary. This is a well-known result that states that a mapping from the unit(m−1)-

sphere to the unit(m−1)-sphere that has degree zero can be extended to a mapping

from the unitm-ball Dm to the unit(m−1)-sphere. The result goes back to Hopf (see

e.g. Bredon (1994) as cited above).

The mappingh divides P into labelled regions which are the pre-images of the

regions in4m−1∗ . This is depicted in Figure 6.2. Now choose a triangulation ofP

with no vertices on the boundary other than the original vertices on∂P. This can, if

necessary, be achieved by adding a single vertex in the centre ofP, sinceP is convex.

Next, choose an iterated pseudo refinement of this triangulation that allows vertices on

the boundary and that is such that each simplex is smaller in diameter than some given

δ > 0. Now label every vertex in the interior of|P| according toL(v) ∈ L(h(v)), where

L(h(v)) are the labels of the image ofv in 4m−1∗ (see Figure 6.2). There is no point

on the boundary∂4m−1∗ that has allm labels, so no simplex in the refinement can have

more thanm−1 distinct labels, as long as the simplices are sufficiently small. Notice

that, sinceP is compact, the mappingh is uniformly continuous.

Figure 6.2: A labelling with index zero
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Finally, one has to get rid of the vertices that were added to the boundary∂P. This

works in the same way as in Lemma 4.4, since the labelling of vertices on the boundary

is consistent. That is, if a vertexv lies on ank-face of the original triangulation spanned
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by original verticesv1, . . . ,vk, thenL(v) ∈ {L(v1), . . . ,L(vk)}. This is the labelling

equivalent to the consistency as in Definition 4.3.

So let the vertices that were added by the iterated pseudo refinement bev1, . . . ,vn,

and letΛ be the ordered index set of the vertices that were added to the boundary. Let

v be a vertex on the boundary. Thenv = ∑l
i=1µivi with µi > 0, for somev1, . . . ,vl .

In particular, the labelling satisfiesL(v) = L(vi) for somei ∈ {1, . . . , l}. So the face

spanned by{v1, . . . ,vi−1,v,vi+1, . . . ,vk} has the same labels as the face spanned by

{v1, . . . ,vi−1,vi ,vi+1, . . . ,vk}. A simplex spanned by{v1, . . . ,vi−1,v,vi+1, . . . ,vk} and

some {vk+1, . . . ,vm} is fully labelled if and only if the simplex spanned by

{v1, . . . ,vi−1,vi ,vi+1, . . . ,vk} and{vk+1, . . . ,vm} is fully labelled.

So the vertices that were added by the iterated pseudo refinement and that lie on

the boundary of∂P can be removed (in reverse order) to obtain a refinement with no

vertices added to the boundary and no completely labelled simplex.

Remark 6.2 In Figure 6.2, the Sperner mappingf S on the boundary has index zero,

but is onto. Suppose one is restricted in subdividingP. For example, assume a trian-

gulation |P| with the same boundary labelling as in Figure 6.2, but that has only one

vertex in the interior ofP. This is depicted in Figure 6.3. Then every labelling of the

interior vertex yields (pairs of) completely labelled simplices. The reason is that the

interior vertex is connected to all boundary faces. For every labelk ∈ {1,2,3}, there

are faces on the boundary with missing labelk, that is, faces with labels1,2 or 2,3

or 1,3. These almost completely labelled faces come in pairs of opposite orientation

because of the index zero property. Thus, in the restricted case, one always obtains

completely labelled simplices whose orientations add up to zero. In the next section,

it is shown how this restricted case compares with the essentiality of an equilibrium

component as in the example by Hauk and Hurkens (2002), and how the unrestricted

case compares with the hyperessentiality of an equilibrium component.

For non-zero labellings one obtains the following result.

Theorem 6.3 Let |∂P| be a labelled triangulation of∂P with indexk. Then there exists

a labelled triangulation|P| that agrees with the given labelled triangulation of the
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Figure 6.3: A labelling with index zero and a restricted triangulation
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boundary and is such that|P| contains|k| completely labelled simplices, each with

orientationsignk.

Proof. The idea is to divideP into labelled regions such that there exist exactly|k|
completely labelled points inP with orientationsignk. This division is then covered

by small simplices.

Choose a subsetB in the interior ofP that is homeomorphic to an(m− 1)-ball.

Define a mappingf|∂B on the boundary ofB that maps the boundary ofB on ∂4m−1∗
and that is such that each almost completely labelled point on the boundary of4m−1∗
has exactly|k| pre-images in∂B with orientationsign k. Such a mapping exists and

can be constructed as follows. Identify the boundary∂B with the unit sphereSm−1.

For (x1, · · · ,xm) ∈ Sm−1, the tuple(x1,x2) can be seen as a complex numberz, and the

mappingf|∂B(z,x3, · · · ,xm) = (zk,x3, · · · ,xm) will do.

The mappingf|∂B has the same degree as the Sperner mappingf S on the boundary

of P. Hence, the mappingf S restricted to the boundary∂P and f|∂B are homotopic via

some homotopy, denoted ash. The homotopyh can be identified with a mapping from

P−B to ∂4m−1∗ , since[0,1]× ∂P is homeomorphic toP−B. Note that∂B and∂P

are homeomorphic to∂4m−1∗ , and are hence themselves homeomorphic. This yields a

divisionP−B into labelled regions with no completely labelled point. Label the region

B with some arbitrary but fixed label. Then the division ofP into labelled regions is

such that there exist exactly|k| points that are completely labelled. These lie on the

boundary ofB. This is depicted in Figure 6.4 for a boundary mapping with index+1.

From here, the proof follows the same lines as the proof of Theorem 6.1. Cover

P with sufficiently small simplices and label the vertices according to the regions they
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Figure 6.4: Obtaining a division with exactly|k| completely labelled points
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are contained in. The vertices that are added to the boundary ofP can be omitted by

the same argument as in the proof of Theorem 6.1 and Lemma 4.4.

As explained in Chapter 5, there are strong similarities between the situation in

the Index Lemma and outside option equilibrium components. The next section shows

how the results from above translate into the game theoretic context and how one can

divide the dual of an outside option into best reply regions, given the boundary division,

such that it does not contain a completely labelled point, i.e. an equilibrium. This can

be achieved by duplicating the outside option only.

6.2 Index Zero Outside Option Equilibrium Compo-

nents

In this section, it is shown that an outside option equilibrium component (in a bimatrix

game with generic outside option) is hyperessential if and only if it has non zero index.

It is also explained how the results of the previous section fit in the game theoretic

context. Before proving the main result of this section, the concepts of essentiality and

hyperessentiality are briefly reviewed.

Wu and Jiang (1962) define essential fixed points. The extension to compact sets

of Nash equilibria is described by Jiang (1963), and is also discussed in van Damme

(1991, Section 10.2). In analogy to the concept of essential fixed point sets (Fort

(1950)), an equilibrium componentC of a gameG is calledessentialif and only if

for every small payoff perturbation of the gameG there exists an equilibrium of the
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perturbed game that is close toC. A gameG̃ is called an equivalent game toG if G̃ can

be obtained fromG by adding a finite number of convex combinations of strategies of

G as pure strategies. In other words, the gamesG andG̃ have the same reduced normal

form. For example, the two games shown below are equivalent.

G =


10,10 0,0

0,0 10,10


 ; G̃ =




10,10 0,0 5,5 3,3

0,0 10,10 5,5 7,7

1,1 9,9 5,5 33
5 , 33

5




A strategy in an equivalent game can be interpreted as a strategy of the original game

and vice versa by rescaling the probabilities for the strategies. An equilibrium com-

ponentC of a gameG is referred to ashyperessentialif it is essential in all equivalent

gamesG̃. Kohlberg and Mertens (1986) define a setSashyperstableif it is minimal

with respect to the following property:S is a closed set of Nash equilibria ofG such

that, for any equivalent game, and for every perturbation of the normal form of that

game, there is a Nash equilibrium close toS. It follows that a hyperessential equilib-

rium component must contain a hyperstable set (Kohlberg and Mertens (1986)): Let

F denote the family of subsets of a single connected component that is hyperessential,

ordered by set inclusion. Every decreasing chain of elements inF has a lower bound,

and therefore, applying Zorn’s Lemma, the familyF must have a minimal element.

It is a well-established fact that non zero equilibrium components are both essen-

tial and hyperessential. The index of a Nash equilibrium component is invariant under

addition or deletion of redundant strategies Govindan and Wilson (1997a, Theorem 2;

2004, Theorem A.3). Therefore the index of a component is the same in all equiv-

alent games. Since the index measures the sum of indices of equilibria close to the

component if the game is slightly perturbed, a non-zero index implies both essentiality

and hyperessentiality of the component (see also Section 1.3 for the properties of the

index).

Whether the converse is also true was an open question until recently. In fixed

point theory, a component of fixed points under a mappingf is called essential if every

mapping close tof has fixed points close to the component. O’Neill (1953) shows that

a fixed point component is essential if an only if it has non-zero index. In game theory,

the Nash equilibria can be described as the fixed points of a map. A perturbation of the

game yields a mapping for the game that is close to the original fixed point mapping.
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So the question arises whether, by suitably perturbing the game, one can show

equivalence between strategic and topological essentiality. Referring to the results of

O’Neill (1954), Govindan and Wilson (1997b) write: “The resolution of this puzzle is

important for axiomatic studies because in a decision-theoretic development it would

be implausible to impose topological essentiality as an axiom unless it is provable

that the space of games is rich enough to obtain equivalence between strategic and

topological essentiality.”

Hauk and Hurkens (2003) found an example of a bimatrix game with an outside

option in which the outside option equilibrium component has index zero and that is

nonetheless essential. This shows that game theoretic and topological essentiality are

not equivalent. If restricted to perturbations of the original game, the space of games

is not rich enough to obtain equivalence between topological and strategic essential-

ity. However, their example fails the requirement of hyperessentiality. So the ques-

tion arises whether the concept of hyperessentiality is the game theoretic equivalent of

topological essentiality.

In this section, it is shown that this is the case for outside option equilibrium com-

ponents with a generic outside option. Furthermore, it is demonstrated why an index-

zero component can be strategically essential, but not hyperessential. Comparing it

with the case of the Index Lemma, essentiality compares with a triangulation in which

one is restricted in the number of simplices in the subdivision, and hyperessentiality

compares with the unrestricted case (see Remark 6.2). Govindan and Wilson (2004),

in a parallel and independent work, show that index zero components cannot be hyper-

essential in general. Their approach is discussed at the end of this section. The merit

of the proof presented here is that it only needs basic tools from algebraic topology.

Also, since the dual construction can easily be visualised, it also provides a geometric

and combinatorial intuition for the result.

The idea of the proof can be explained by considering an example of an outside

option equilibrium component that is essential but not hyperessential. Such an example

is given by the game in (6.1). This is the game by Hauk and Hurkens (2002) showing
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that topological essentiality is not the equivalent of topological essentiality.



4,5 0,−23 2,−1 0,0

0,−15 8,−1 −2,−21 0,0

2,−11 1,3 3,1 0,0


 (6.1)

The dual construction for this game is given in Figure 6.5. The dual payoff map-

ping f4, restricted to the boundary of the dual of the outside option component, has

degree zero. The image does not complete a full cycle. Hence, the outside option

equilibrium component has index zero. This can also be verified by a simple counting

argument. There is only one other equilibrium of the game, namely the pure strategy

equilibrium with payoffs(4,5).

Figure 6.5: An index zero essential component
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Hauk and Hurkens show that the component is essential. It should be noted that

only payoff perturbations of the payoffs for player I in the outside option are of impor-

tance. All other payoffs are generic. Looking at the dual construction of the game, it

can be seen that the restricted dual payoff mappingf4|∂C4 : ∂C4→ X4 is such that the

image of f4|∂C4 “wraps” completely aroundv∗, but does not complete a full cycle.

A more detailed depiction of the image off4|∂C4 is given in Figure 6.6. The image

of f4|∂C4 consists of a union of(m−2)-simplices inX4. These are the images of the

faces ofC4, and are depicted in bold dashed lines. In the figure,vOut is the image under

f4 of the vertex inX4 that represents best reply regionOut in X, and the verticesvl

are the images of the vertices inX4 that represent a best reply region with labell or

an unplayed strategyl in X (l = 2,5,6).

Now suppose one perturbs the payoffs in the outside option. ThenvOut lies close to

v∗. Consider, for example, a perturbation ofOut such that strategy1 of player I is the
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Figure 6.6: The essentiality of the component
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best reply toOut. ThenvOut lies in the region with label1 close tov∗, as depicted in

Figure 6.6. So there are two simplices in the image ofC4 that containv∗, namely the

simplex spanned byv5,v6 andvOut and the simplex spanned byv6, v2 andvOut. The

former simplex represents the vertex inX with labels5, 6 andOut, the latter represents

the vertex inX with labels6, unplayed strategy2 andOut. A similar analysis applies if

vOut lies in one of the regions with label2 or 3. Therefore, the component is essential.

This is the game theoretic counterpart to the situation described in Remark 6.2.

It should be noted, however, that it is not sufficient to just count the almost com-

pletely labelled points on the boundary of a component to see whether a component

is essential or not. The payoff mapping is generally more complex than the Sperner

mapping, since the payoff vectors are generally not unit vectors. Consider, for exam-

ple, the component depicted in Figure 6.7. This component is similar to that of game

(6.1). The difference is that the payoffs for player I in the column of (6.1) representing

strategy6 are modified such thatv6 is shifted to the left compared withv6 in Figure

6.6. There are two points on the boundary ofC4 with labels1,2, two with labels1,3

and two with labels2,3, and each pair is such that the points have opposite orientation.

But the component is not essential. There is a “gap” in the image aroundv∗. If the

perturbation of the outside option for player I were such thatvOut lies in the shaded

area as depicted, then there would not exist an equilibrium that usesOut. A necessary

and sufficient condition for the essentiality of a component is that the retraction of the

image of∂C4 is onto. The retraction is defined as on page 112 for components and is

similar to that described in Lemma 4.5: Ifp is a point in the image off4|∂C4, define the

retraction as the intersection of the line betweenv∗ and p, in the direction ofp, with
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the boundaryX4. This condition ensures that there is no “gap” in the image of∂C4,

so the image “wraps” completely aroundv∗.

Figure 6.7: A non-essential component
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Now suppose one duplicatesOut and perturbs the payoff for player II such that the

original regions inX whereOut is a best reply is divided as depicted in Figure 6.8.

This yields two vertices in the dual construction that are associated with the outside

option. Hence, by looking at equivalent games in whichOut is duplicated, one obtains

“richer” divisions ofC4 into best reply regions. For example, if one makes strategy2

of player I the best reply toOut1, and strategy1 the best reply toOut2, one obtains a

perturbation of the equivalent game that has no equilibrium close to the component.

The associated labelled dual of this perturbed equivalent game is illustrated in Fig-

ure 6.8. Since there is no completely labelled point in the dual of the outside option,

there is no equilibrium that involvesOut, and hence no equilibrium close to it. The

associated payoff perturbations are given in (6.2).



4,5 0,−23 2,−1 0,0 ε,0

0,−15 8,−1 −2,−21 ε,0 0,ε

2,−11 1,3 3,1 0,2ε 0,0


 (6.2)

The method of duplicatingOut is the underlying idea in the proof of Theorem 6.7.

The idea is to divide the dual of the component into labelled regions such that there

exists no completely labelled point, as in Theorem 6.1. One then has to show that

such a division can in fact be created by duplicatingOut and perturbing the payoffs in

the duplicates ofOut. DuplicatingOut and perturbing the payoffs for player II in the
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Figure 6.8: Duplication of the outside option
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duplicates refines the triangulation ofC4 into simplicesv4. The difference to Theo-

rem 6.1 is that the new vertices are close to the vertex representingOut. Perturbing the

payoffs for player I then divides the simplices in the refined triangulation into labelled

regions. Unlike the proof of Theorem 6.1, this is achieved by assigning payoffs to the

vertices, as opposed to assigning labels.

Consider an outside option game with a generic outside option for player II. It

is first shown that the magnitude of the perturbations for player I in the outside op-

tion does not matter when analysing the essentiality of an outside option equilibrium

component. The following lemma shows first that the combinatorial division ofX4∗

into simplices and labelled regions is invariant under multiplying payoff columns of

player I with some positive constant. Twom×n games are referred to ascombinatori-

ally equivalentif both yield combinatorially equivalent triangulations|X4| and if the

divisions of the simplices in the triangulation are combinatorially the same.

Lemma 6.4 Let G be anm×n bimatrix game represented by payoff matricesA and

B. Let G̃ be represented bỹA = [λ1A1, . . . ,λnAn] andB, whereλ j > 0, for j = 1. . . ,n.

ThenG andG̃ are combinatorially equivalent.

Proof. Let λ1 > 0 andλ j = 0 for j 6= 1. Let (x,y) be a Nash equilibrium ofG. Define

ỹ′ = ( y1
λ1

,y2, . . . ,yn). Rescaling̃y′ such that it lies inY yieldsỹ such that(x, ỹ) is a Nash

equilibrium ofG̃. Continuing in the same fashion with the otherλ j yields the desired

result.

Lemma 6.4 shows that the combinatorial equilibrium properties of a game are un-

affected if a column ofA or a row ofB is multiplied by some positive constant. One
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just has to adjust the weights on the strategies to account for the multiplication of the

columns and rows. It also shows that the combinatorial structure of|X4| and the com-

binatorial divisionX4∗ is invariant under such operations. As a corollary one obtains

the following result.

Corollary 6.5 Let G be a game with outside option for player II in which the outside

option equilibrium component has index zero. LetG̃ be obtained fromG by copying

Out a finite number of times. If there exists a perturbation ofG̃ with small payoff

perturbations for player II and large payoff perturbations for player I in the copies of

Out such that there is no equilibrium that plays a copy ofOut with positive probability,

then there exists a small perturbation ofG̃ such that there exists no equilibrium close

to the outside option equilibrium component.

Proof. Without loss of generality it can be assumed that the payoffs to player I in the

outside option are zero. Adding or subtracting some constant to the payoff columns

of A does not change the best reply properties. The payoffs for player I inG̃ can be

described as follows.

yIn

︷ ︸︸ ︷


|
A1, . . . ,An−1 |

|

yOut

︷ ︸︸ ︷

AOut1 · · · AOutk




Let (yIn,yOut) be a strategy profile that makes player I indifferent between best reply

strategiesi1, . . . , ik. Now multiply the columnsAOutj by someε > 0, and consider the

strategy(yIn

c , yOut/ε
c ), wherec = ∑ j y

In
j + ∑l

yOut
l
ε . Then strategiesi1, . . . , ik are still the

best reply strategies. Thus one can easily switch from large perturbations to small

perturbations for player I in copies ofOut, and vice versa, without changing the equi-

librium properties of the game.

The proof of Theorem 6.7 below uses a similar argument as in Corollary 6.5 for the

payoff perturbations for player II in the copies ofOut. In the proof of Theorem 6.7 one

divides the dual of an outside option into smaller simplices by adding vertices. These

vertices correspond to added strategies for player II. The following lemma shows that

one can obtain a combinatorially equivalent refinement such that the added vertices are
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close to the vertex representingOut. Any two vertices that are close have payoffs to

player II that are close. This follows from Lemma 2.2. Two triangulations with vertices

vk∈K andv′k∈K are calledcombinatorially equivalentif the affine linear extension of

g(vk) = v′k, k∈ K, on the vertices is an isomorphism that maps simplices on simplices

and faces on faces.

Lemma 6.6 LetC4 be the dual of an outside option equilibrium component, and let

vOut denote the vertex inC4 representingOut. Consider an iterated refinement ofC4

with no vertices added to the boundary ofC4. Then there exists a combinatorially

equivalent iterated refinement in which the added vertices are close tovOut.

Proof. The proof is by induction on the number of added vertices. Note thatC4 is

star-shaped (see page 111). So the case is clear for just one added vertex.

Now suppose one has an iterated refinement withk added vertices. Consider the

refinement that is obtained by adding the firstk−1 vertices. For this refinement, there

exists a combinatorially equivalent refinement withk−1 vertices close tovOut. The

vertex added last in the iterated refinement lies in some simplex in this refinement

(which might not be unique, in case it lies on some face). This simplex corresponds

to a simplex in the refinement where all vertices are close tovOut. Hence, one can

add a vertex close tovOut to thek−1 other vertices close tovOut in order to obtain a

combinatorially equivalent iterated refinement.

The following theorem is the game theoretic equivalent of Theorem 6.1. The index

is given by a division of the boundary into labelled regions. If the index is zero, this

division can be extended to a division ofC4 such that no point inC4 is completely

labelled. As in the proof of Theorem 4.6, one then has to account for the restriction

imposed by the game theoretic context. In particular, one has to show that this division

can be achieved by perturbing an equivalent game in whichOut is duplicated a finite

number of times.

Theorem 6.7 LetC be an outside option equilibrium component in a generic outside

option game. ThenC is hyperessential if and only ifI(C) 6= 0.

Proof. Without loss of generality assume that all payoffs for player I are positive and

that the payoffs in the columns ofA add up to 1, i.e.|A j |= 1 (this can be achieved by
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first adding a suitable constant to each column and then scaling; see Section 3.3). Let

I(C) = 0, so the dual payoff mappingf4|∂C4 has degree zero. Instead of considering

the dual payoff mappingf4|∂C4, it is more convenient to consider the payoff mapping

f and its restrictionf|∂C4 to the boundary∂C4. Note that f4 is simply Id4 ◦ f . In

particular, the image off4|∂C4 completes a cycle aroundv∗ if and only if the image of

f|∂C4 completes a cycle aroundv∗. Therefore, the mappingf|∂C4 has also degree0.

It follows that f|∂C4 is homotopic to some constant map? (see e.g. Bredon (1994,

II, Corollary 16.5 and V, Lemma 11.13)), where the constant lies on the boundary of

4m−1∗ . First the mapping can be retracted to the boundary of4m−1∗ (see Lemma 4.5

and p. 112), and can then be deformed into a constant map along4m−1∗ . Let this

homotopy be denoted ash. Soh : ∂C4× [0,1] →4m−1∗ , andv∗ does not lie in the

image ofh.

Figure 6.9: A homotopy for outside option equilibrium components
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As in the proof of Theorem 6.1, the mappingf|∂C4 extends to a mapping onC4

such that no point is mapped onv∗. This can be seen as follows. The homotopy is

constant on(∂C4,1). This yieldsh : (∂C4× [0,1])/'(·,1) →4m−1∗ , where∂C4×1 is

identified with a single point. The dual componentC4 is star-shaped (see page 111),

so(∂C4× [0,1])/'(·,1) is homeomorphic toC4. This gives a mapping, also denoted as

h, that mapsC4→4m−1∗ such thatv∗ does not lie in the image ofh. The pre-images

of the labelled regions in4m−1∗ now divideC4 into labelled regions such that no point

in C4 is completely labelled. This is depicted in Figure 6.9 for the component in the

example (6.1).

One now has to show that such a division can be achieved in a game theoretic

context as a division into best reply regions by refining the triangulation ofC4 and
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choosing the payoffs for player I accordingly. For this, as in the proof of Theorem 4.6,

choose an iterated pseudo refinement of the triangulation ofC4 that allows one to

add vertices to the boundary ofC4. Now assign a payoffh(v) to each vertexv in the

iterated pseudo refinement. Then the payoffsh(v) for vertices added to the boundary

are consistent with the payoffs for the original vertices on the boundary ofC4. If the

simplices in the refinement have a sufficiently small diameter, the image of a simplex

is a simplex in4m−1∗ that does not containv∗. This is ensured byh being uniformly

continuous.

Now delete all vertices that were added to the boundary of|C4|. According to

Lemma 4.4, this does not create completely labelled points, and, by Lemma 4.2, yields

a regular triangulation. This results in a division ofC4 as depicted in Figure 6.10 for

the component in the example (6.1).

Figure 6.10: An approximation of the homotopy
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So far, one has created an extended game in which strategies for player II are added

(see Lemma 3.12). Each added vertex corresponds to an added strategy. The corre-

sponding payoffs to player II in the added strategies are determined by Lemma 2.2, and

those for player I are given by the value of the homotopy at the vertex that represents

the added strategy. The extended game is such that neitherOut nor any of the added

strategies are played in an equilibrium.

It remains to show that a similar game, ı.e. one that yields a combinatorially equiv-

alent division ofC4 into simplices and best reply regions, can be created as a perturbed

equivalent game. This is achieved by duplicatingOut and perturbing the payoffs in the

copies ofOut.
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Let vk∈K be the set of vertices added, whereK is an ordered set, reflecting the

order in which the vertices were added. From the above construction each vertexvk

has a payoffh(vk). Lemma 6.6 shows that there exists a combinatorially equivalent

refinement ofC4 in which all added vertices lie close tovOut, the vertex representing

Out in C4. Let the set of the vertices in this refinement be denoted asv′k∈K, wherev′k
is close tovOut and corresponds tovk.

Now assign the payoffsh(vk) to vertexv′k. This yields a division ofC4 into best

reply regions that is combinatorially equivalent to the original division. In particular,

it does not contain a completely labelled point. This is depicted in Figure 6.11 for the

component in (6.1).

Now every vertex in|X4| that is close to the vertexvOut has payoffs to player II

that are close to the payoffs ofOut to player II if the regular triangulation is translated

into an extended payoff matrixB′ (see Lemma 2.2). SoB′ consists ofB and perturbed

copies ofOut. As for the payoffsh(v′k) for player I, Corollary 6.5 shows that one can

make them arbitrarily small without creating equilibria. Hence, one created a game

that is a perturbed equivalent game in which the outside option is duplicated a finite

number of times.

Figure 6.11: Adding vertices close tovOut

3

1

3
2

.vOut

In the same way as an outside option equilibrium component with index zero might

be essential (i.e. having at least2l (l > 0) equilibria for every small perturbation), an

index k outside option equilibrium component might have|k|+ 2l (l > 0) equilibria

for every small perturbation of the original game. Using the dual construction, such an

example would be easy to create (a3×n game would be sufficient for that). Allowing
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perturbations of equivalent games, one gets, similarly to Theorem 6.3, the following

result.

Proposition 6.8 LetC be an outside option equilibrium component with indexI(C) =

k. Then there exists an equivalent game and a perturbation of the equivalent game

such that there are only|k| equilibria close toC and whose indices add up tok.

Proof. The proof follows the same lines as the one of Theorem 6.7, and is the game

theoretic equivalent of Theorem 6.3. If the index of a component isI(C) = k, then

there exists a homotopy between the payoff mappingf|∂C4 and a mapping that maps

an(m−2)-ball exactlyk times around itself. This homotopy is used to divideC4 into

labelled regions such that there exist exactly|k| completely labelled points inC4 with

local degreesignk (as in the proof of Theorem 6.3). Then this division ofC4 can be

imitated by duplicatingOut a sufficient number of times and choosing the payoffs for

player I accordingly, just as in the proof of Theorem 6.7.

Section 5.3 above discusses the limits of the dualisation methods with respect to

general components of equilibria. Problems arise from the fact that, in general, de-

generacies occur in the payoff space of both players. Therefore, the above method is

insufficient to prove that general index zero components cannot be hyperessential.

In a parallel and independent work, Govindan and Wilson (2004) show that an

equilibrium component has non-zero index if and only if it is hyperessential. Their

results are based on results from fixed point theory and apply to generalN-player

games, and their proof uses highly technical arguments.

In fixed point theory, a fixed point component of a mappingf is called essential if

every mapping close tof has fixed points close to the component (Fort (1950)). It is

a well-known result in fixed point theory that if the fixed point index of a component

is zero, and if the underlying space is “well behaved”, then there exists a fixed point

free mapping close to the original mapping (O’Neill (1953)). In game theory, the Nash

equilibria can be described as the fixed points of a suitable mapping. A perturbation

of the game yields a mapping for the perturbed game that is close to the original fixed

point mapping. The Hauk and Hurkens example and the example presented in the next

section, however, show that just considering perturbations of the original game is not

sufficient to obtain equivalence between strategic and topological essentiality.
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The index of a component is the same in all equivalent games (Govindan and Wil-

son (1997a, Theorem 2; 2004, Theorem A.3)). By considering equivalent games, one

increases the space of possible perturbations. Thus the space of mappings that can be

obtained from perturbing equivalent games increases in dimension. This is the under-

lying idea in the proof of Govindan and Wilson for general components of equilibria.

The authors show that, if allowing equivalent games, the space of games, i.e. the space

of perturbed equivalent games, is rich enough to obtain equivalence between topolog-

ical and game theoretic essentiality.

The authors start from a map that has no fixed points close to the component.

Such a map exists after O’Neill (1953). From this map the authors create a perturbed

equivalent game that is such that the Nash map for this game, i.e. the mapping that

describes the Nash equilibria of the game as fixed points, copies the properties of the

original fixed point free map. That is, the Nash map does not have fixed points close

to the component. Thus a component is hyperessential if and only if it has non-zero

index.

In essence, the key idea of the approach by Govindan and Wilson and of the ap-

proach presented here is the same. One has the existence of mappings with certain

properties. For outside option components, the mapping does not map a point in the

dual of the component to the completely labelled point. Considering the parallels with

the Index Lemma, the index reflects a combinatorial property of the component. In the

case of Govindan and Wilson, one has a fixed point free mapping. The index describes

a topological property of the component. By adding redundant strategies it is shown

that the these mappings can arise as mappings from a perturbed equivalent game.

Remark 6.9 The combinatorial nature of the approach presented above is such that,

by duplicatingOut, one createsoneequivalent game such that, for allε > 0, there

exists a perturbation of that game smaller thanε that has no nearby equilibria. In

particular, the equivalent game is independent ofε. This is not the case for the equiv-

alent game constructed by Govindan and Wilson (2004), where the equivalent game

depends onε. Typically, one has to add more and more redundant strategies asε

becomes smaller.
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6.3 Restricted Duplication of Strategies and Index Zero:

An Example

Hauk and Hurkens (2002) show the non-hyperessentiality of the component in the

game (6.1) by adding a convex combination of strategies as a new strategy for player I,

i.e. not by duplicatingOut. The added strategy is a convex combination of strategies1

and2 (for details see Hauk and Hurkens (2002)).

This section provides an example of an index zero outside option equilibrium com-

ponent that is not only essential, but is essential in all equivalent games that do not

contain a duplicate ofOut. It shows that duplicatingOut is not only sufficient, but in

cases also necessary to create an equivalent game in which an index zero outside op-

tion equilibrium component is not essential. For general index zero equilibrium com-

ponents, this suggests that it is necessary to add redundant strategies for both players

in order to create an equivalent game in which the component is not essential.

The example is constructed as follows. Consider the following game.

G0 =


H2 0 0,9

0 H− 0,9


 , (6.3)

with

H2 =


10,10 0,0

0,0 10,10


 , H− =




13,13 7,12 1,14

12,7 8,8 2,1

14,1 1,2 1,1


 . (6.4)

GameG0 is the same as the game in (1.18) in Section 1.4. The2× 2 gameH2 in

the upper left part inG0 is a2×2 coordination game, and the3×3 gameH− in the

lower middle part ofG0 is a game where the mixed strategy equilibrium in which both

players mix uniformly between their first two strategies yields the highest equilibrium

payoff, which is10 to both players (see also (1.13) and (1.16) for further discussion).

In Section 1.4, it is shown that the outside option equilibrium component of the game

G0 has index 0. The only equilibria that are not “cut off” by the outside option are the

pure strategy equilibria inH2 and the mixed strategy equilibrium inH− with payoff

10 for both players. The two former ones have index+1, the latter one has index−1.

Hence, the outside option equilibrium component has index 0.
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Lemma 6.10 The outside option equilibrium componentC(G0) of the game in (6.3) is

essential in all equivalent games that do not contain a duplicate ofOut. In particular,

the component is essential.

Proof. Consider the games̃G2 andG̃−1 as below.

G̃−1 =


 H+2

0,9
...

0,0 0,9


 , G̃2 =


 H− 0,9

...
0,0 0,9


 (6.5)

Then the outside option equilibrium components inG̃2 andG̃−1 are both essential and

hyperessential. The gamesG̃2 andG̃−1 are variants of the gamesG2 as in (1.15) and

G−1 as in (1.17). By the same reasoning as in Section 1.4, it is easy to verify that

C(G̃2) has index +2, and thatC(G̃−1) has index−1, whereC(·) denotes the outside

option equilibrium component of a game. Thus bothC(G̃2) andC(G̃−1) are essential

and hyperessential. Now consider the equivalent game, denoted asG̃0, in which one

adds convex combinations for player I. Then every such game is of the form

G̃0 =




H+2 0,0 0,9

6≤ 9 ≤ 9
...

≤ 9 ≤ 9
...

≤ 9 6≤ 9 0,9

0,0 H− ...




, (6.6)

where the entry ’6≤ 9’ means that at least one payoff for player II in that part of the

game is larger than 9, and ’≤ 9’ means that all the payoffs for player II in that part of

the matrix are less than or equal to 9. Note that the payoffs inH+2 andH− are such

that a convex combination does not allow entries larger than 9 in both parts of a row,

i.e. in both theH+2 and theH− part of a convex combination of original columns. It is

now sufficient to consider only payoff perturbations for player I in the outside option,

since all other payoffs of the gamẽG0 are generic. Let the perturbation vectors of

player I’s payoffs in the outside option be denoted byεu, εm andεl for perturbations in

the upper, middle and lower part of the game (6.6). Without loss of generality it can be

assumed thatεu ≥ 0, εm≥ 0 andεl ≥ 0. It can also be assumed that the perturbation

is generic, i.e. there is a unique maximal perturbation. Suppose there were two (or

more) maximal perturbations. If one is among theεu
i and one among theεl

i , then

player I mixing uniformly between the strategies with the maximal perturbation and

138



player II playingOut is an equilibrium closeC(G̃0). All other cases of non-generic

perturbations are covered by the three cases below.

1) The maximal perturbation is among theεm
i . In this case, player I playing the

strategy with that maximal perturbation and player II playingOut is an equilib-

rium close toC(G̃0).

2) The maximal perturbation is among theεu
i . Then consider the game consisting

of the first two strategies of player II andOut and the strategies as in (6.6) for

player I, with payoffs and perturbations as above, i.e. consider

T =




H+2
εu

1,9
...

6≤ 9
...

≤ 9
εm

1 ,9
...

≤ 9
εr

1,9
...

0,0
...




, (6.7)

T is an perturbed equivalent form of the gameG̃−1 in (6.5). SinceC(G̃−1) is

hyperessential, there exists a strategy pair(x,y) that is an equilibrium close to the

outside option equilibrium componentC(G̃−1). It is now shown that this strategy

pair, if interpreted as a strategy pair of the gameG̃0, is also an equilibrium close

to C(G0). First consider player I. By construction, player I has no incentive to

deviate from the strategyx, seen as a strategy of the gameG̃0 as in (6.6), if

player II plays strategyy as a strategy of the gamẽG0.

It remains to show that player II has no incentive to deviate fromy, seen as a

strategy for the gamẽG0 via the mapping(y1,y2,yOut) 7→ (y1,y2,0,0,0,yOut).

The strategy profilex is such that the first two strategies of player II must yield

a payoff of less than or equal to 9, where at least one must yield a payoff of 9.

Otherwise, player II would playOut only, and this cannot be an equilibrium for

the gameT due to the maximal perturbationεl
i . But, by the choice of the payoffs

in the gamesH+2 and H−, this means that the other strategies of player II’s

(except forOut) cannot be best replies againstx, i.e. they all yield a payoff

strictly less than 9. This is because either the first strategy of player I or the

second strategy of player I must have a weight of around9
10. This implies that
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the remaining weight is not sufficient to yield an expected payoff larger than 9 for

player II in the other strategies (except fromOut). Thus(x,y) is an equilibrium

of the gameG̃0, which is also close toC(G0).

3) The maximal perturbation is among theεl
i . Then consider the game consisting

of the third, fourth and fifth strategy of player II andOut and the strategies as in

G̃0 for player I, with payoffs and perturbations as above, i.e. consider

T ′ =




0,0
εu

1,9
...

≤ 9
...

≤ 9
εm

1 ,9
...

6≤ 9
εl

1,9
...

H− ...




, (6.8)

Then the analysis is analogous to the one above. The gameT ′ is a perturbed

equivalent form of the gamẽG2 in (6.5). The componentC(G̃2) is both essential

and hyperessential. Thus there exists an equilibrium(x,y) of T ′ that is close

to C(G̃2). In the same way as above it can be verified that(x,y) is also an

equilibrium of the gamẽG0 that is close toC(G0).

Thus the component is essential in all equivalent games of the form (6.6). It remains

to show that it is also essential when adding convex combinations for player II, but no

copies ofOut. For this, extend the gameT as in (6.7) by three columns of zeros, and

the gameT ′ as in (6.8) by two columns of zeros. Then the index of the components

in these modified games stays invariant, and the components remain hyperessential.

Now consider the gamẽG0 as in (6.6) and add convex combinations of strategies for

player II, but no duplicate ofOut. If the maximal perturbation in the outside option

lies in the upper part, the added convex combinations can be translated into convex

combinations of the modified gameT by assigning the weight on columns3,4,5 to the

added columns of zeros inT. The component in the modified gameT is hyperessential,

and one shows that the equilibrium close to the component in the modified gameT is

also an equilibrium of the equivalent game of (6.6). For maximal perturbations in

the lower part of the game one does the same analysis with the modified gameS by

treating the weights on columns1,2 as weights on the two added columns of zeros. If

the maximal perturbation lies in the middle part, the case is trivial.

140



Index of Symbols

Symbol Description Page

1k vector inRk with entry1 in every row 15

4m−1 the standard(m−1)-simplex 16

4m−1∗ standard(m−1)-simplex with canonical division 69

|4m−1 | simplicial division of the standard(m−1)-simplex 65

|4m−1 |∗ division of |4m−1 | into labelled regions 71

AS(4) Sperner matrix 71

A(v) artificial payoff matrix 46

A, B payoff matrixes for player I and II 15

C(·) outside option equilibrium component 32, 110

C4 dual of a component of equilibria 111

f S Sperner mapping from|4m−1 | to4m−1 70

f payoff mapping 85

f4 dual payoff mapping 86

H best reply polyhedron 18

I(x,y) the index for equilibria as defined by Shapley 25

Id4 mapping identifyingX4 with 4m−1 86

I , J set of pure strategies of player I and II 15

I(·) projection ofL(·) on I 16

J(·) projection ofL(·) onJ 16

L(·) labelling function for points inX andY 16

l(w) lifting of w∈ vbr4 into v4 53

M(k) set of L-H paths inX×Y with missing labelk 23

M4
∗ (k) the set of L-H paths inX4∗ with missing labelk 51

P best reply polytope 40

141



P4 polar of the best reply polytope 40

|P4| simplicial surface of the polar polytope 49

P4∗ labelled surface of the polar polytope 49

p(ws) projection ofws∈ v4 on the best reply facevbr4 48

Rk k-dimensional real space 15

supp(·) support of mixed strategy 16

v4 (m−1)-simplex in|X4| 41

vbr4 best reply face ofv4 47

v∗ completely labelled point in4m−1∗ andX4 69, 86

V, W set of vertices inX andY 17

ws a point inv4 46

w4s the simplex containingws in X4∗ 56

X, Y mixed strategy spaces of player I and II 15

X0, Y0 enlarged strategy spaces spanned byX (Y) and0 23

X( j), Y(i) best reply regions inX andY 16

X(i), Y( j) unplayed strategy faces ofX andY 16

X4 the dual space ofX 41

|X4| dual construction 41

X4∗ labelled dual construction 47
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