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Abstract

This thesis provides a new geometric-combinatorial construction to characterise the
Nash equilibria of a non-degenerate bimatrix game and their indices. Considering a
non-degenerate x n bimatrix game, the construction yields &m— 1)-simplexX*

that is simplicially divided intgm— 1)-simplices, reflecting the best reply structure of
player Il. Each(m— 1)-simplex in the triangulation is divided into best reply regions

of player I. This yields a division oX2 into regions with label4, ..., m.

In this representation, the Nash equilibria are represented by completely labelled
points, and the index is the local orientation of theegions around completely la-
belled points. For a missing label of player I, the Lemke-Howson algorithm follows

paths inX” that are defined bgn— 1 labels of player I.

This representation of bimatrix games is shown to be related to Sperner's Lemma
in dimensionm— 1. In particular, the existence of Nash equilibria in non-degenerate

bimatrix games is equivalent to Brouwer’s fixed point theorem.

The construction yields a new strategic characterisation of the index, conjectured
by Hofbauer (2000). It is shown that a Nash equilibrium in a non-degenerate bimatrix
game has index +1 if and only if one can add strategies to the game such that the

equilibrium is the unique equilibrium of the extended game.

The construction can be extended to outside option equilibrium components in
bimatrix games. The characterisation for such components is shown to be similar to the
well-known Index Lemma. As a consequence, index zero boundary labellings allow
triangulations that do not contain a completely labelled simplex. The game theoretic
counterpart applies to outside option equilibrium components. It is shown that an
outside option equilibrium component is hyperessential if and only if it has non-zero

index. This question had been open for some time.

It is also shown how equilibrium components of arbitrary index can be constructed

by means of outside options in bimatrix games.



Contents

Introduction 10
1 Equilibrium Components with Arbitrary Index 14
1.1 Preliminaries . . . . . . . . . . 15
1.2 The Lemke-Howson Algorithm . . . . . . .. ... ... ... .... 21
1.3 IndexTheory . . . . . . . . . . . ... . 25
1.4 Construction of Equilibrium Components with Arbitrary Index . . . . 30
2 A Reformulation of the Index for Equilibria in Bimatrix Games 37
2.1 TheDual Construction . . . .. .. ... .. .. ... .. ...... 38
2.2 Labelling and Characterisation of Nash Equilibria . . . . . . ... .. 46
2.3 The Lemke-Howson Algorithm in the Labelled Dual Construction . . 50
2.4 An Orientation for Nash Equilibria . . . . . . ... ... ....... 55
3 Sperner’'s Lemma and Labelling Theorems 64
3.1 SpernersLemma . . . .. . . . ... e 65
3.2 The Application to Bimatrix Games . . . . .. ... ... ...... 76
3.3 A Topological Interpretation of the Dual Construction . . . . . . . .. 84
4 A Strategic Characterisation of the Index 89
4.1 A Geometric Interpretation . . . . . ... ... L. 90
4.2 Some Technical Requisites . . . . . . ... .. ... ... ...... 94



4.3 A Game Theoretic Characterisationofthelndex . . . . . . ... ... 98

5 Outside Option Equilibrium Components 103
5.1 A Generalised Version of Sperner'sLemma . . . .. ... ...... 105
5.2 The Index for Outside Option Equilibrium Components . . . . . . .. 107
5.3 Degenerate Games and General Equilibrium Components . . . . . . . 114
6 Index Zero and Hyperstability 117
6.1 IndexZerolLabellings. . .. ... ... ... ... . ... ... 118
6.2 Index Zero Outside Option Equilibrium Components . . . . . . . .. 123
6.3 Restricted Duplication of Strategies and Index Zero: An Example . . 137
Index of Symbols 141
References 143



List of Figures

1.1 The bestreply polyhedron . . .. ... ... ... .......... 19
1.2 The division oiX andY for thegamein(1.6) .. ... ... ..... 19
1.3 Theorientationofabasis . . . . ... ... ... .. ... ...... 21
1.4 The L-H algorithm forthegamein(1.6) . . . ... ... ... .... 23
1.5 Equilibria at the ends of L-H paths have opposite indices . . . . . . . 26
1.6 Theindexinthe coordinationgame . ... ... ... ... ..... 27
1.7 The K-M structuretheorem . . . . . . . ... .. ... ... ..... 28
1.8 Division ofX before and after adding an outside option . . . . . . .. 31
1.9 The division ofX for the gameG? with outside option . . . . . . . . 34
2.1 The projection of the polyhedrdth and the polytop® . . . . . . .. 40
2.2 Thedualofapolytope ... .. .. ... ... ... ......... 41
2.3 The simplicial divisionoK® . . . . . . ... ... .. ... ..... 42
2.4 The best-reply division of for the game in Example 2.3 . . . . . . . 44
2.5 The triangulation oK” for Example 2.3 . . . . . . ... .. ... .. 45
2.6 The labelled dual constructiotf” for Example2.3 . ... ... ... 47
2.7 The labelled polar polytop&A ..................... 50
2.8 The L-H paths fok=2in X 54
2.9 Inaccessible equilibria and cycles)(ﬁ ................ 56
2.10 The construction mf/sA ......................... 57
2.11 The index in(*A forExample2.3. . .. .. ... .. ... .. ... 58

5



2.12

2.13

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Theindex P . . . . . . 60

OrientationalongL-Hpaths . . . ... .. ... .. ... ...... 62
Alabelled triangulation . . . . . ... ... ... o oL 66
The proof of Sperner’s Lemmafd? . . . ... ... ........ 69
The canonical divisiod™ 1 . . . . . ... ... ... ... ... .. 70

A division of A™Linto labelled regions . . . . ... ... ... ... 71
An algorithm for finding completely labelled triangles . . . . . . . .. 74
The Sperner algorithm as a path-following algorithm . . . . . . . .. 75
Sperner’s Lemma implies Brouwer and viceversa . . . . . ... ... 76
An iterated refinement of a simplex and the barycentric subdivision. . 79
Aniterated refinement 0K2| . . ... ... L. 80
Arefinementof™ . . .. ... ... 83

A labelled triangulation for the game in Example 2.3 . . . . . . . .. 83
Themappindy . . . . . . . . . . 85
The payoffmapping . . ... ... ... ... ... ........ 86
The dual payoff mappinf™ . . . . . .. . .. . ... ... ... 87
The orientation of th&” andA™ 2 . . . .. .. ... ... ... 87
Anindex+1equilibriuminH=™ . ... ... ... o oL 91
Anindex+1 equilibriumform=2 . . ... ... ... ... .... 92

A unique index-1 equilibrium in an extension of the coordination game 94

An iterated pseudo refinement . . . . .. ... ... L. 95
The regular refinement obtained from the iterated pseudo refinement . 96
Pseudo vertices with consistent payoffs . . . . .. .. .. ... ... 97
Ahomotopy . . . . . . . . . e 100

An approximation of the homotopy . . . . . . . ... .. ... .. .. 101



4.9 The labelled dual for an extension of the game in Example 2.3 . . . . 102
5.1 Avrepresentation of an outside optiongame . . . . .. ... ... .. 104
5.2 Ageneral version of Sperner'sLemma . . . . ... .. ... ..... 106
5.3 Anoutside option componentwithindeX . . . . . ... ... ... 109

5.4 An outside option componentwithindex . . . . . ... ... ... 110

5.5 A perturbation of anindex2 component . . . . .. ... ... ... 113
5.6 The dual of the componentin(5.4) . . ... ... ... ... ..... 116
6.1 TheconeovadP . .. . ... ... . . ... ... ... 119
6.2 Alabellingwithindexzero . . .. ... ... ... ... ....... 120
6.3 A labelling with index zero and a restricted triangulation . . . . . . . 122
6.4 Obtaining a division with exactlk| completely labelled points . . . . 123
6.5 Anindex zero essentialcomponent . . . . . .. .. ... ..., 126
6.6 The essentiality of the component . . . . .. ... .. ... ..... 127
6.7 Anon-essentialcomponent . . . . .. .. ... ... .. 128
6.8 Duplication of the outside option . . . . . . . .. .. ... ...... 129
6.9 A homotopy for outside option equilibrium components . . . . . . . . 132
6.10 An approximation of the homotopy . . . . . . .. .. ... ... ... 133
6.11 Adding verticesclosety . . . . . .« . oo 134



Acknowledgements

| am indebted to Bernhard von Stengel for his excellent supervision. He introduced me
to the questions addressed in this work. | am thankful for the many hours of discus-

sions, and also for his guidance and patience in times when results seemed far away.

Also, | am grateful to Srihari Govindan and Robert Wilson for useful advice and

encouragement.

Furthermore, | would like to thank the members of the Mathematics Department
for their general support. In particular, | thank Jackie Everid, David Scott and Mark
Baltovic for their assistance, as well as Nic Georgiou and Luis Cereceda for their help

on the final draft.

There were many people who supported me personally. Foremost, | would like to
thank my parents and Ane S. Flaatten for always being there for me. | am also beholden

to Philipp Beckmann for his advice, and to Philip Hochstrate for his inspiration.

Finally, I would like to thank the London School of Economics and Political Sci-
ence (LSE), the Department of Mathematics at LSE and the UK Engineering and Phys-

ical Sciences Research Council (EPSRC) for financial support.



To my parents, for all their support.



Introduction

Since Shapley (1974) introduced the index for equilibria, its importance in the context
of game theory has been increasingly appreciated. For example, index theory can be
a useful tool with regards to strategic characterisations of equilibria and equilibrium
components. Demichelis and Ritzberger (2003) show that an equilibrium component
can only be evolutionary stable if its index equals its Euler characteristic. At the same
time, most of the existing literature on the index is technically demanding, and the
amount of algebraic topology required is substantial. As a consequence, this literature

is difficult to access for most economists and other applied game theorists.

The contribution of this thesis can be divided into two parts. The first part concerns
methods and techniques. By introducing a new geometric-combinatorial construction
for bimatrix games, this thesis gives a new, intuitive re-interpretation of the index. This
re-interpretation is to a large extent self-contained and does not require a background
in algebraic topology. The second part of this thesis concerns the relationship between
the index and strategic properties. In this context, the thesis provides two new results,
both of which are obtained by means of the new construction and are explained in
further detail below. The first result shows that, in non-degenerate bimatrix games, the
index can fully be described by a simple strategic property. It is shown that the index
of an equilibrium is+1 if and only if one can add strategies with new payoffs to the
game such that the equilibrium remains the unique equilibrium of the extended game.
The second result shows that the index can be used to describe a stability property
of equilibrium components. For outside option components in bimatrix games, it is

shown that such a component is hyperessential if and only if it has non-zero index.

The new geometric-combinatorial construction, which is referred to asluhé
constructioncan be described as follows. Formx n bimatrix game, the construction
translates the combinatorial structure of the best reply regions for both players into an
(m— 1)-simplex that is divided into simplices and labelled regions (see, for example,
Figure 2.6 below). The simplices in the division account for the best reply structure
of player Il. The simplices themselves are divided into best reply regions for player I,

accounting for the best reply structure of player I.
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In this representation of bimatrix games, the Nash equilibria are represented by
points that are completely labelled with all pure strategies of player I. Earlier con-
structions required the use of all pure strategies of both players as labels. The index
is simply the local orientation of the labels around a completely labelled point (Fig-
ure 2.11). The Lemke-Howson algorithm, which builds the foundation for Shapley’s
original index definition, can be re-interpreted as a path-following algorithm in the new
construction (Figure 2.8). Since the new construction is of dimensieri, both the
index and the Lemke-Howson algorithm can be visualised in dimension at3toist

everymx n bimatrix game withm < 4.

But the construction does not merely yield an intuitive re-interpretation of the index
and the Lemke-Howson algorithm. More significantly, it can disclose relationships
between the index and strategic properties. In this context, this thesis provides, as

mentioned, two new results.

As for the first result, it is shown that the index of an equilibriura-isif and only
if it is the unigue equilibrium of an extended game. The result proves a conjecture by
Hofbauer (2000) in the context of equilibrium refinement. The proof is based on the
idea that one can divide am— 1)-simplex such that there exists only one completely
labelled point which represents the index equilibrium (Figure 4.7). Then such a
division can be achieved as the dual construction of an extended game where strategies

for player Il are added (Figure 4.8).

The second result solves, for a special case, a problem that was open for some
time. This problem addresses the question whether and how topological essential-
ity and game theoretic essentiality (Wu and Jiang (1962); Jiang (1963)) are related.
Govindan and Wilson (1997b) argue that the resolution of this problem is highly rele-
vant with respect to axiomatic studies: Imposing topological essentiality as an axiom
in a decision-theoretic agenda is questionable if there is a gap between topological and
strategic essentiality. Hauk and Hurkens (2002) construct a game with an outside op-
tion equilibrium component that has index zero but is essential. This demonstrates that
topological essentiality is not equivalent to strategic essentiality. However, their exam-
ple fails the requirement of hyperessentiality, i.e. the component is not essential in all
equivalent games (Kohlberg and Mertens (1986)). The follow-up question is whether

hyperessentiality is the game theoretic counterpart of topological essentiality. In this
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thesis, it is shown that this is the case for outside option equilibrium components in
bimatrix games. That is, an outside option equilibrium component in a bimatrix game
is hyperessential if and only if it has non-zero index. The proof is based on creat-
ing equivalent games by duplicating the outside option. An example presented in this
thesis shows that one can create an outside option equilibrium component that has in-
dex zero and is essential in all equivalent games that do not contain duplicates of the
outside option. However, it can be shown that the component fails the requirement of

hyperessentiality if allowing duplicates of the outside option.

The proof of this result employs the combinatorial nature of the index for compo-
nents of equilibria. In the framework of the dual construction, the index for compo-
nents of equilibria is defined by a combinatorial division of a boundary into labelled
best reply regions. This re-interpretation of the index for components is very similar to
the index in the framework of the Index Lemma, a generalisation of Sperner’'s Lemma.
For labellings as in the Index Lemma it is shown that, if the index of a boundary
triangulation is zero, then there exists a labelled triangulation such that the triangula-
tion does not contain a completely labelled simplex. The proof extends an index-zero
boundary division of a polytope into labelled regions such that no point in the interior
of the polytope is completely labelled. This extension is then translated into a triangu-
lation (Figure 6.2). The proof for outside option components works similarly. Given an
index-zero component, the dual of the component can be divided into labelled regions
such that no point is completely labelled. It is then shown that such a division can be
achieved as the dual construction of an equivalent game in which the outside option is

duplicated and perturbed (Figure 6.10).

The concept of essentiality is strongly influenced by the theory of fixed points and
essential fixed point components (Fort, 1950). In a parallel and independent work,
Govindan and Wilson (2004) show that, for genégblayer games and general equi-
librium components, a component has non-zero index if and only if it is hyperessential.
Their proof is based on a well-known result from fixed point theory that shows that a
fixed point component is essential if and only if it has non-zero index (O’Neill, 1953).
Their proof is technically very demanding. In contrast, the proof presented here for the
special case provides a geometric intuition and does not require a knowledge of fixed

point theory.
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There is, however, a link between the combinatorial approach of this thesis and
fixed point theory. This link is established via Sperner's Lemma (Sperner, 1928). The
representation of bimatrix games in form of the dual construction reveals strong analo-
gies with Sperner's Lemma. Sperner’'s Lemma is a classical result from combinatorial
topology and is equivalent to Brouwer’s fixed point theorem. Using the parallels of
the dual construction with Sperner’s Lemma it is shown that the existence of Nash
equilibria in a non-degenerate bimatrix game is equivalent to Brouwer’s fixed point
theorem. On a similar topic, McLennan and Tourky (2004) derive Kakutani’s fixed

point theorem using the Lemke-Howson algorithm.

An additional result of this thesis, which does not involve the dual construction,
is the construction of equilibrium components with arbitrary index. It is shown that
for every integerg there exists a bimatrix game with an outside option equilibrium
component that has index The construction is purely based on the properties of the
index, and does not require knowledge of algebraic topology. This result originates

from Govindan, von Schemde and von Stengel (2003).

The structure of this thesis is as follows. Chapter 1 introduces notations and con-
ventions used throughout this work (Section 1.1). Sections 1.2 and 1.3 contain reviews
of the Lemke-Howson algorithm and index theory. Section 1.4 shows how equilib-
rium components of arbitrary index can be constructed. Chapter 2 introduces the dual
construction (Sections 2.1 and 2.2) and gives a re-interpretation of the index and the
Lemke-Howson algorithm (Sections 2.3 and 2.4). Chapter 3 describes the parallels
between the dual construction, Sperner’s Lemma, and Brouwer’s fixed point theorem.
In Chapter 4, it is shown that the index for non-degenerate bimatrix games can be fully
described by a strategic property. In Chapter 5, the dual construction is extended to
outside option equilibrium components (Section 5.2). It also contains a review of the
Index Lemma (Section 5.1). Finally, Chapter 6 investigates the relationship between
the index and hyperessentiality. Section 6.1 considers index-zero labellings in the con-
text of the Index Lemma. In Section 6.2, it is shown that an outside option equilibrium
component is hyperessential if and only if it has non-zero index. A list of symbols is
given at the end. Proofs and constructions are illustrated by figures throughout this

work.
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Chapter 1

Equilibrium Components with

Arbitrary Index

This chapter describes a method of constructing equilibrium components of arbitrary
index by using outside options in bimatrix games. It is shown that for every inte-
gerq there exists a bimatrix game with an outside option equilibrium component that
has indexg. The construction is similar to the one used in Govindan, von Schemde
and von Stengel (2003). That paper also showsdksitible sets violate a symmetry
property which the authors refer to as theak symmetry axionThe construction of

equilibrium components of arbitrary index is the main result of this chapter.

The structure of this chapter is as follows. Section 1.1 introduces notational con-
ventions and definitions that are used throughout this work. Section 1.2 gives a brief
review of the classical Lemke-Howson algorithm that finds at least one equilibrium in a
non-degenerate bimatrix game. Although the Lemke-Howson algorithm does not play
arole in the construction of equilibrium components of arbitrary index, it can be used in
the index theory for non-degenerate bimatrix games. Shapley (1974) shows that equi-
libria at the ends of a Lemke-Howson path have opposite indices. The Lemke-Howson
algorithm also plays an important role in subsequent chapters when it is interpreted in
a new geometric-combinatorial construction (see Chapters 2 and 3). Section 1.3 re-
views the concept of index for Nash equilibria in both non-degenerate bimatrix games
and generaN-player games. Using basic properties of the index for components of

Nash equilibria, Section 1.4 shows how equilibrium components of arbitrary index can
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be constructed as outside options in bimatrix games. It is shown that for every inte-
ger g there exists a bimatrix game with an equilibrium component that has igdex

(Proposition 1.6).

1.1 Preliminaries

The following notations and conventions are used throughout this work. The
k-dimensional real space is denotedR&s with vectors as column vectors. Anx n
bimatrix game is represented by twox n payoff matricesA andB, where the entries

Ajj andBjj denote the payoffs for player | and player Il in thth row andj-th column

of A andB. The set of pure strategies of player | is denoted by{1,...,m}, and the

set of pure strategies of player Il is representedNby {1,...,n}. The rows ofA and

B are denoted; andb; fori € |, and the columns ok andB are denoted\; andB; for

] € N. The sets of mixed strategies for player | and player Il are given by
xz{xeRmugx:L X zowel}, Y:{yeR”ylﬁy:L yi ZOV]EN},

wherel, € RK denotes the vector with entlyin every row. For easier distinction of
the pure strategies, 16t= {m+1,...,m+n}, following Shapley (1974). Any € N
can be identified witm+ j € J and vice versa. Aabelis any element in UJ. For
notational convenience, the laljak sometimes used to refer to the pure strategyn

of player Il if there is no risk of confusion.

X is a standardm— 1)-simplex that is given by the convex hull of the unit vectors
g € R™ i el, andY is a standardn — 1)-simplex given by the convex hull of the unit
vectorsej_m € R", j € J. The terms {m—1)” and “(n—1)” refer to the dimension of
the simplex. In general, gim— 1)-simplex is the convex hull ahaffinely independent
points in some Euclidian space. These points arevéingcesof the simplex, and the

simplex is said to bepannedy its vertices.

An affine combinatiorof pointsz,...,z, in an Euclidian space can be written as
S Aizowith S A =1andA; e R, i =1,...,m. A convex combinatiois an affine
combination with the restriction; > 0, i =1,...,m. A set ofmpointsz,...,zn IS
affinely independerit none of these points is an affine combination of the others. This

is equivalent to saying thgt™ ; Aiz, = 0ands " ; A = 0imply thathA; = ... = Am=0.
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A convex set hadimensiord if it hasd + 1, but no more, affinely independent points.
A k-faceof an(m— 1)-simplex is thek-simplex spanned by any subsekof 1 vertices.
The standardm— 1)-simplex spanned by the unit vectorsif is denoted byA\™1,
SoX = AM™landy = AM 1L

For a mixed strategy € X, the support ok are the labels of those pure strategies
that are played with positive probability ¥a The support foy € Y is defined similarly.
So

suppx) = {i €I [x >0}, suppy) ={j € J|yj-m>0}.
The strategy set§ andY can be divided into best reply regiok$j) andY(i). These

are the regions ixX wherej € J is a best reply and the regionsYnwherei €| is a

best reply, so
X(j):{xex 1B/ x> BkavkeJ}, Y(i)={yeY |ay>ayvkell.

The regionsX(j) andY (i) are (possibly empty) closed and convex regions that cover
X andY. For a pointx in X the setJ(x) consists of the labels of those strategies of

player Il that are a best reply with respecixtdlhe set (y) is defined accordingly, so

J={jedxeX(()}, Hy)={iel|yeY()}. (1.1)

Fori € I, the setX(i) denotes thém— 2)-face of X where the-th coordinate equals
zero. Forj € J, the sety(j) is defined as thén— 2)-face ofY where the(j —m)-th

coordinate equals zero.
X(i) = {(xl,...,xm>T e X | % :0}, Y(j) = {(yl,...,yn)T ey |y,-_m=o}.
Similar to (1.1), the setx) andJ(y) are defined as
1) ={iel[xeX(i)}, Iy)={icIlyeY()} (1.2)
The labeld_(x) of a pointx € X and the label& (y) of a pointy € Y are defined as
L(x)={kelUud|keX(k)}, Ly)={kelud|keY(k)}. (1.3)

From (1.1) and (1.2) it follows thdt(x) = 1 (x) UJ(x) andL(y) = I(y) UJ(y). So the
labels of a poinix € X are those pure strategies of player | that are played with zero
probability inx and those strategies of player Il that are best repligs $milarly, the
labels ofy € Y are those pure strategies of player Il that are played with zero probability

in y and those strategies of player | that are best repligs to
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Definition 1.1 Anmx n bimatrix game is called non-degenerate if for akE X and
y €Y the number of best reply strategies agaixg at most the size of the support of
X, and the number of best reply strategies agaynstat most the size of the support of

y,i.e.[J(x)| < |suppx)| and|l(y)| < |supfy)| for all xe X andy €Y.

It follows directly that in a non-degenerate game a pmiX can have at moshlabels

L(x) and that a poingin Y can have at mostlabelsL(y). Non-degeneracy implies that
X(j) andY (i) are either full-dimensional or empty (in which case a strategy is strictly
dominated). For non-degenerate games the set of veMicex is defined as those
points inX that lie on somék — 1)-face ofX and that havé pure best reply strategies

in player II's strategy space. The set of vertivésn Y is defined accordingly, i.e.
V={veX|supdv) =k, J(v)|=k}, W={weY |supdw)=Kk, [I(w)|=k}.

Non-degeneracy implies thdtis the set of those points K that have exactlynlabels,
andW is the set of those points iv that have exactly labels. Notice that the unit
vectors inR™ andR", i.e. those representing the pure strategieX endY, are inV
andW. An edgein X is defined bym— 1 labels, and an edge Mis defined byn—1
labels. For subsets, K’ c 1 UJ let

X(K)={xe X |Kc LX)}, Y(K)={yeY|K cLy)}. (1.4)

That is, in caséK| = m—1 and|K’| = n—1, an edge irX is defined byX(K), and
an edge iry is defined byy (K’). If the game is non-degenerate, every edg¥ iand

every edge irY is a line segment.

The notion of vertices and edges comes from the study of polyhedra and polytopes
(see e.g. Ziegler (1995)). In generapa@yhedrorH is a subset oRY that is defined by
a finite number of linear inequalities. If the dimensiontbfs d, then it is called full-
dimensional. A polyhedron that is bounded is callgubfytope A faceof a polytope
P is the intersection oP with a hyperplane for which the polytope is contained in one
of the two halfspaces determined by the hyperplane. If these faces are single points,
they are calledertices if they arel-dimensional line segments, they are cakelges
If the dimension of a face is one less than the dimension of the polytope, it is called

facet
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For a bimatrix game with payoff matr& for player Il, one can define a polyhedron

over player I's mixed strategy spaieas follows.
H={(xv)eXxR|1lx=1 B'x<1, x >0Viecl} (1.5)

The polyhedrorH is referred to as theest reply polyhedranin a similar fashion,

one can define the best reply polyhedron oYeusing the payoff matrixA. Note

that one can assume that all entriesPoénd B are strictly greater than zero, since
adding a positive constant to the payoffs does not affect the Nash equilibria of a game.
The polyhedrorH is described by the upper envelope, that is, the maximum, of the
expected payoffs for pure strategies of player Il as functions of the mixed strategy

played by player I.

Figure 1.1 depicts the polyhedréhfor the payoff matrix

6 4 1
B= .
L 3 5]

For example, the line that describes the facet with I184slgiven by the line between

v = 6 for pure strategyl, and payoffv = 1 for pure strategy. The labels of a point

on the boundary oH are the “labels” of the linear inequalities that are binding in
that point. A vertex oH is described byn binding linear inequalities, edges dfare
described byn— 1 binding linear inequalities. Eadlm— 1)-facet of the polyhedroHi

is defined by a single binding inequality and corresponds either to a best reply strategy
of player Il or to an unplayed strategy of player IHfis projected ont, it yields the

division of X into best reply regionX(j).

The above definitions can be illustrated using3he3 bimatrix game that is given

by the following payoff matrices, taken from von Stengel (1999a).

0 30 01 -2
A=|1 0 1 B=(2 0 3. (1.6)
-3 4 5 21 0

The mixed strategy space of player | is a2-simplex, and so is the mixed strategy
spaceY of player Il. Figure 1.2 shows the divisionsXfandY into best reply regions.
For notational convenience, the subs€{k) andY (k), for k € | UJ, are just denoted

by their label in Figure 1.2. The vertices V are emphasised by dots and are exactly
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Figure 1.1: The best reply polyhedron

| | | |
TXE T OX@ T X3 X

those points inX that have three labels. A boundabyface of X carries the label of

the pure strategy that is played with zero probability on that face. So, for example, the
pure strategy0,0,1)" € X has labels{1,2,4}, since strategie,2 are played with

zero probability, and strategyof player Il is the pure best reply strategy.

Figure 1.2: The division oK andY for the game in (1.6)

A perturbationof a bimatrix game is defined by twm x n matrices,ea andeg.
The perturbed gamés given by the game with payoff matricést ep andB+¢g. A
perturbation is said to be small fial|, ||| < € for some smalk > 0, where|| - ||
denotes the Euclidian (or the maximum) normRIA". A perturbation iggenericif the

resulting perturbed game is non-degenerate.

The subsequent chapters use the concept of orientation as a definition of the index

for Nash equilibria. For am-tuple of vectorsl = (vy,...,Vyn) in R™, an orientation
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can be defined using the following term:
sign det?’ = sign det [Vl Vm} : 1.7)

This term is+1 or —1 if and only if the vectors inl/ span anm— 1)-simplex that is
contained in a hyperplane not containiig R™. The two signs yield two equivalence
classes of ordered vectors in general position. Choosing a standard orientation (which
is usually that induced by the unit vectas ..., ey), the orientation ofl/ is +1 if it
belongs to the same orientation class as the chosen standard orientation, and it is

otherwise.

The orientation can also be described as the sign of a permutation matrix. Suppose
one has a set ah vectors that are in general position, and each vector has a distinct
labeli € {1,...,m}. Then the vectors can be ordered according to their labelling, and
(1.7) can be applied to determine the orientation of the labelled set of vectors. Let the
so-ordered set of vectors be denotedlas At the same time, one can re-order the
vectors in such a way that (1.7) yields the same sign as that of the chosen standard
orientation. Let this re-ordered basis be denote@dasBoth 1/ and‘?”’ are a basis of
R™, where one basis is a permutation of the other basis. The basis transformation is
described by a permutation matiixsuch thatl’ =D - ¥/, sodet?”’ = detD -det V.
HencedetD = +1 if det?” = det?/, anddetD = —1 if det?” = —det?. So the
determinant of the permutation matiix which is either+1 or —1, can also be used
to describe the orientation. An illustration of the orientation concept is depicted in
Figure 1.3. For the vectong,Vv,,v3 as in Figure 1.3 the determinant has sigf.

The associated permutation of the labels, written as a product of cycles, is given by
(1)(23), and has also siga1. This corresponds to an anti-clockwise orientation on
A? if looked at from the origirD € R®, whereas the standard orientation induced by

the unit vectors yields a clockwise orientation.

One can also define an orientatiaativeto a pointv, € R™. Let (v1,...,Vm) be

an orderedn-tuple of vectors ilR™. Then the orientation is defined by the term
sign det?’ = sign det [Vl —Vp ... vm—vp] : (1.8)

Expression (1.7) is the same as (1.8) ¥gr= 0 € R™. The term (1.8) is+1 or —1

if and only if the vectors invy,...,vm,vp span am-simplex. That isys,...,Vym span
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Figure 1.3: The orientation of a basis

an(m— 1)-simplex such thaty, is not an affine combination of the vectoss. . ., V.
The hyperplane defined by the affine combinations of the veetors , vy, dividesR™
into two halfspaces. If two pointg, and\/ID lie in the same halfspace, the orientation
relative tovp and\/p is the same. If the two points lie in different halfspaces, (1.8)

yields opposite signs.

Let f be a function between two topological spa&andT. If f is continuous
then f is called amapping For two mappingsf,g from a topological spac8to a
topological spacd, i.e. f,g: S— T, ahomotopyh betweenf andg is a continuous
deformation off intog. A homotopyh can be described as a mappmgSx [0,1] — T
such thah(x,0) = f(x) andh(x,1) = g(x) for all x € S. This is denoted a$ ~ g.

1.2 The Lemke-Howson Algorithm

In their seminal work, Lemke and Howson (1964) describe an algorithm for finding at
least one equilibrium in a non-degenerate bimatrix game. This algorithm is referred
to as the Lemke-Howson (L-H) algorithm, and it is the classical algorithm for finding
Nash equilibria in non-degenerate bimatrix games. This section gives a brief review
of the L-H algorithm, since it can be used in the theory of index for non-degenerate
bimatrix games. Detailed reviews of the L-H algorithm can be found in Shapley (1974)
and von Stengel (2002). Shapley (1974), motivated by the L-H algorithm, introduces
the notion of index for non-degenerate bimatrix games. He shows that the equilibria at

the two ends of an L-H path have opposite indices. The L-H algorithm also plays an
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important role in the subsequent chapters where it is translated into a new geometric-

combinatorial construction (see Chapters 2 and 3).

Proposition 1.2 Let G be anm x n bimatrix game (not necessarily non-degenerate).

Then(x,y) € X x Y is a Nash equilibrium o6 if and only ifL(x) UL(y) =1 UJ.

Proof. This follows from the fact that in an equilibrium a pure strategy is a best reply
strategy or is played with zero probability. If the game is degenerate, both might be
the case. In any case, the conditloix) UL(y) = | UJ ensures that only the best reply

strategies are played with non-zero probability. ]

If a game is non-degenerate, an equilibrium strateglays a pure strategy with
positive probability if and only if it is a best reply strategy againsand vice versa.
So in equilibriumL(x) UL(y) = 1UJ andL(x) NL(y) = 0. A pair (x,y) such that
L(x)UL(y) =1 UJis calledcompletely labelled

The fact that an equilibrium strategyplays a pure strategy with positive probabil-
ity if and only if it is a best reply strategy againg(and vice versa) builds the basis
for the L-H algorithm. The L-H algorithm describes a path in the product sgac¥
along which the points are almost completely labelled with a fixed missing label. A
pair (x,y) is said to bealmost completely labelleifl L(x) UL(y) =1 UJ — {k} for some
k € 1UJ. The endpoints of a path are fully labelled and hence equilibria of the game.
In order to obtain a starting point for the L-H algorithm one exteXdmdY with the
pointsO € R™and0 € R". These zero vectors can be seen as artificial strategies where
the probability on each pure strategy is zero, i.e. no strategy is played. Th@®3ir

is then completely labelled.

The following description of the L-H algorithm follows that given by Shapley
(1974). LetXy denote the boundary of the-simplex spanned b§ € R™ andg € R™,
i €1. SoXp consists of a union ofm— 1)-faces, where oném— 1)-face of Xp is
given byX. The othefm— 1)-faces ofXp are spanned by vertic®s= R™ ande € R™,
i € 1 —{k}. Accordingly, the seY; is defined as the boundary of thesimplex spanned
by 0 € R" andej_m € R", j € J. The(n—1)-face ofYy that is spanned bg;_m € R",
j € J, represent¥. The other(n— 1)-faces ofYy are spanned by verticé€sc R" and
ej—meR™, jeJ—{l}. Forx e Xo, the labeld (x) are defined al(x) UJ(x) for x € X
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and agi € | | x; = 0} otherwise. Foy € Yy, the labeld (y) are defined aKy) UJ(y) for
ye Y and as{j € J|yj_m = 0} otherwise. The vertices Xy are the points witim la-
bels, and the vertices Iy are the points withm labels. S® € RMis a vertex inXg with
labelsl and0 € R" is a vertex inYp with labelsJ. The vertex pair0,0) € R™ x R"
is completely labelled, and it is referred to as #réficial equilibrium. For subsets
K.,K'clul, let

Xo(K)={xeX |KC LX)}, Yo(K)={yeYo|K' CL(y)}.

Xo Is a graph whose vertices are points witHabels, and whose edges are described
by m— 1 labels. Similarly, the sef is a graph whose vertices are points witlabels,
and whose edges are describednby 1 labels. Depictions 0Ky andYp for the game

in (1.6) are given in Figure 1.4.

Figure 1.4: The L-H algorithm for the game in (1.6)

Now fix a labelk € | UJ and consider the subset of labéls J — {k}. The idea
of the L-H algorithm is to follow a unique path of almost completely labelled points
with labelsl UJ — {k} in the product grapfXo x Yp. As a starting point, one chooses
a completely labelled pair of verticés,y) in Xg x Yo, SO one can either start at an
equilibrium or the artificial equilibrium. Each path with labélsJ — {k} lies in the
set

M(K) = {(x,y) € Xox Yo |lUJ—{k} C L(X)UL(y)}. (1.9)

At the end of each path one finds another completely labelled pair of vertices, i.e. an
equilibrium. The paths of almost completely labelled points are referred toHhs

paths The following theorem and proof can also be found in von Stengel (2002).
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Theorem 1.3 (Lemke and Howson, 1964; Shapley, 1974)etG be a non-degenerate
bimatrix game andk be a label inl UJ. ThenM (k) as in (1.9) consists of disjoint paths
and cycles in the product grapXy x Yp. The endpoints of the paths are the equilibria

of the game and the artificial equilibriu®,0). The number of equilibria is odd.

Proof. Let (x,y) € M(k). Thenx andy have together eithen+n or m+n— 1 labels.
In the former case, the tuple,y) is either an equilibrium or the artificial equilibrium.
In the latter case, one hagx) UL(y) = | UJ — {k}, and there are the following three

possibilities:

a) |L(x)| = mandy hasn—1 labels. Therxis a vertex inXp, andy lies on some

edgee(y) in Yo. So{x} x e(y) is an edge iy x Yp.

b) x hasm— 1 labels and is part of an ed@éx) in Xo, whiley hasn labels and is a

vertex inYp. Thene(x) x {y} is an edge iy x Yo.

c) xhasmlabels ang/ hasnlabels. Sqx,y) is a vertex in the product grapf x Yo.

Therefore, the se¥l(k) defines a subgraph &b x Y. If (X,y) is completely labelled,

then the vertexx,y) is incident to a unique edge in the subgraytk), namely{x} x
Yo(L(y) — {k}) if ke L(y) or Xo(L(x) — {k}) x {y} if k€ L(x). In case c), one has
L(x) UL(y) =1 UJ—{k}, so there must be a duplicate labellitx) "L(y). But this
means thatx,y) is incident to both edges<} x Yo(L(y) — {k}) andXo(L(x) — {k}) x

{y}. Therefore, the sé¥l (k) is a subgraph where all vertices are incident to one or two
edges. Hence, the subgraltik) consists of paths and cycles. The endpoints of the
paths are the equilibria and the artificial equilibrium. Since the number of the endpoints

is even, the number of equilibria is odd (not counting the artificial equilibrium)]

The L-H algorithm can be illustrated by the game in (1.6). This is depicted in
Figure 1.4. One starts in the completely labelled artificial equilibri@®). Now
choose a label to drop, say lakebf player I. This determines an edgeXg along
which the points have labed 3. At the other end of this edge one finds a vertex
v € Xo with labels2,3,5. The vertex paii(v,0) has label,3,5 and4,5,6, so5is a
duplicate label. This determines an edgé&grwith labels4,6 leading to the vertew

with labels3,4,6. So the vertex paifv,w) has the duplicate lab&, and one follows
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the edge inXg that is given by label®, 5, leading tov' with labels2,4,5. Now (V',w)
has duplicate labet. This yields an edge il defined by label$, 3, leading tow
with labels6, 1,3. The pair(V',w) is completely labelled and hence an equilibrium of

the game in (1.6).

1.3 Index Theory

For non-degenerate bimatrix games, the index for equilibria was first introduced by
Shapley (1974). Shapley’s index theory is motivated by the L-H algorithm, and Shap-

ley shows that equilibria which are connected via an L-H path have opposite indices.

Formally, let(x,y) be an equilibrium of a non-degenerate bimatrix game with pay-
off matricesA andB. Let A’ andB’ denote the square sub-matrices obtained ffom
andB by deleting those rows and columns that correspond to pure strategies played

with zero probability inx andy. So

A= [Aij]iesupp(x)Ajesupp(y)a B = [Bij]iesupp(x)/\jesupp(y) (1.10)

are the payoff matrices restricted to the support ahdy. Without loss of generality
it can be assumed that all entriesAfndB are (strictly) greater than zero. This is
possible since adding a positive constant to the entries @f B does not affect the

equilibria of the game.

Definition 1.4 (Shapley, 1974)The index of an equilibriurtx, y) of a non-degenerate
bimatrix game with payoff matricésandB is given as the negative of the sign of the

determinant of the following index matrix obtained frénandB:

, 0o #B
[(x,y) = —sign det :
LA’)T 0]

Using basic laws for the calculation of the determinant, this expression simplifies to

1(x,y) = sign(—1)*"1detA') "detB’, wherek is the size of the support efandy.

Remark 1.5 Shapley (1974) defines the index as



i.e. Definition 1.4 is the negative of the original definition, for the following reasons.
Definition 1.4 is consistent with the generalisation of the index for components of equi-
libria. Furthermore, according to Definition 1.4, pure strategy equilibria and equilib-

ria that are the unique equilibrium of a game have indek

Shapley shows that equilibria that are connected via an L-H path have opposite
indices and that the sum of indices of equilibria of a game equal@ising the index
as in Definition 1.4). In Shapley’s original work, the proof of this claim is not very
intuitive. A more intuitive approach can be found in Savani and von Stengel (2004).
Basically, it employs the fact that along a path with- n — 1 labels that connects two
completely labelled vertices the “relative position” of the labels stays constant. This is
illustrated in Figure 1.5. The two fully labelled points are connected via a path with
labels2,3, where2 is always on the left of the path ar3don the right (and the non-
missing labels have a similar fixed orientation in higher dimension). The fully labelled
vertex on the left read$, 2,3 in clockwise orientation, and the fully labelled vertex
on the right readq, 2,3 in anti-clockwise orientation. In this sense the index is an

orientation of the labels around a fully labelled vertex.

Figure 1.5: Equilibria at the ends of L-H paths have opposite indices

To apply this concept of orientation to bimatrix games, Savani and von Stengel
first consider symmetric games. In symmetric games, the L-H paths can be followed
in the strategy space of just one player, say player I, by replacing the labels of player I
in X by the corresponding best reply labels of player | in the divisiory ofThen
the Nash equilibria of a symmetric game correspond to verticésthmat have labels
1,---,m. Forthe3 x 3 coordination game, this is depicted in Figure 1.6. But every non-

symmetric game with payoff matricésandB can be symmetrised by constructing the
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game with payoff matrices

0 A
c_[

Y

B" 0

0 B
) C' =
[AT 0

again assuming that all payoffs AfandB are strictly greater than 0. Then the equi-

libria of the game with matrice€ andC' correspond to the equilibria of the orig-
inal game by restricting the solutions of the symmetrised gani &amdY, and re-

normalising the probabilities.

Figure 1.6: The index in the coordination game

In non-degenerate games, the Nash equilibria are singletons in the product space
X x Y. For degenerate games one has to consider sets of equilibtia . Kohlberg
and Mertens (1986, Proposition 1) show that the set of Nash equilibria of any finite
game has finitely many connected components. A maximally connected set of Nash
equilibria is referred to as eaomponent of equilibria The index of a component of
equilibria of a game is an integer that is computed as the local degree of a map for
which the Nash equilibria of the game are the zeros. Loosely speaking, the local de-
gree of a map counts the number of cycles (in higher dimension spheres) around zero
obtained by the image of a cycle (in higher dimension sphere) around the component
(see e.g. Dold (1972, IV, 4)). The Nash equilibria of a game can be described as the
fixed points of a mapping : X xY — X xY (see e.g. Nash (1951) ori(; Pearce
and Stacchetti (1993) for such mappings). Such maps are ¢ddigll mapsDefining
F = f —Id yields aNash fieldwhose zeros are the Nash equilibria of a game. The
index is independent of the particular map used (see Govindan and Wilson (1997b),
for bimatrix games, and, for games with any number of players, Demichelis and Ger-

mano (2000)). For generic bimatrix games it is the same as the index in Definition 1.4
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(Govindan and Wilson (1997b)). An introduction to the concept of index for compo-

nents of equilibria can be found in Ritzberger (2002, 6.5).

Using the Kohlberg-Mertens (K-M) structure theorem (Kohlberg and Mertens (1986,
Theorem 1)), the index can also be expressed as the local degree of the projection map
from the equilibrium correspondence to the space of games (see Govindan and Wilson
(1997a), for bimatrix games, and, for games with any number of players, Demichelis

and Germano (2000)). This can be illustrated using the following parameterised game.

1-t,1-t 0,0
— { (1.11)

| 00 tt

In this example, the gam&3(t) are parameterised liye R. Figure 1.7 shows that the
equilibrium correspondend&(G(-)) C G(+) x (X xY) overG(-) is homeomorphic to
G(-) itself. In Figure 1.7 p denotes the probability for the first strategy of player I in
equilibrium. If player | playg p,1— p) € X in an equilibrium, then player II's strategy
in that equilibrium is alsdp,1— p) € Y, wherep =t gives the mixed equilibrium of

the game whef <t < 1.

Figure 1.7: The K-M structure theorem

E(G(")) " 0 p=1

0 " p=0

G() 1 1 1

In general, lef” denote the space of games for a fixed number of players with a
fixed number of strategies. Théhcan be parameterised ®F, wherek equals the
number of players multiplied by the product of the numbers of pure strategies per
player. Let> denote the product space of mixed strategy spaces. Then the equilibrium

correspondence oveéris defined as
E(I) ={(G,0) eI x| ais an equilibrium ofG} .

The K-M structure theorem states that the space of ganieiomeomorphic t& (")

(after a one-point compactification). In general, the K-M structure theorem does not
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apply to restrictions of the space of ganfess in (1.11). If, for example, one re-

strictsI” to a single point that represents a game with more than one component of
equilibria, the space of games, i.e. the single point, is not homeomorphic to the graph
of the equilibrium correspondence, which consists of several disjoint sets of equilibria.

Nevertheless, (1.11) gives a good illustration of the K-M structure theorem.

For the illustration in Figure 1.7, the local degree of the projection map EQ)
onl measures, loosely speaking, the local orientation of the equilibrium correspon-
dence relative to the orientation bf In the example, all completely mixed equilibria
have index—1. The pure equilibria in the non-degenerate gamest(iZe{0,1}) have
index+1. The corners of the Z-shaped correspondence are those pure strategy equi-
libria in the degenerate gamesH{0,1}) which disappear or split into two equilibria

with opposite indices for small perturbations. These have index 0.

The index for components and for singletons in the non-degenerate case has useful
properties that are employed in the next section to construct components of arbitrary

index.

1) For the non-degenerate case, the index defined as the local degree is the same as
the index defined in Definition 1.4 (Govindan and Wilson (1997b)).

2) The sum of indices of components of equilibria for a fixed game eguhlsee
e.g. Govindan and Wilson (1997a)).

3) For sufficiently small generic perturbations of a degenerate game, the index of a
component equals the sum of indices of equilibria in the perturbed game close
to the component (see e.g. Govindan and Wilson (1997a;b) for a discussion).
This fact is illustrated in Figure 1.7. Take the pure strategy equilibrium in the
degenerate cage= 1 that has index 0. If the game is perturbed “to the right”

(t +¢€) the equilibrium vanishes, if it is perturbed “to the left™{ €) it splits into

two equilibria close to it, one with index1 and one with index-1.

4) The index of a component is the same in all equivalent games (Govindan and
Wilson (1997a, Theorem 2; 2004, Theorem A.3)), i.e. itis invariant under adding
convex combinations of existing strategies with the respective payoffs as new

pure strategies.
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An equilibrium component is said to lessentialif every small perturbation of the
game yields a perturbed game that has equilibria close to the component. It follows that
an equilibrium component with non-zero index is essential. An equilibrium component
is said to behyperessentiaif it is essential in all equivalent games. Therefore an
equilibrium component with non-zero index is also hyperessential. Chapter 6 reviews
the concept of (hyper)essentiality in more detail. It addresses the question whether and
under what circumstances the converse is also true, i.e. whether (hyper)essentiality

implies non-zero index.

1.4 Construction of Equilibrium Components with Ar-

bitrary Index

In this section it is shown how games with equilibrium components of arbitrary index
can be constructed. This new result is based on a construction that uses outside op-
tions in bimatrix games. The construction is similar to the one used in Govindan, von
Schemde and von Stengel (2003), where the authors construct symmetric components
of arbitrary index in order to show thagtstability violates a notion of symmetry. A

great part of the following description is borrowed from this paper.

First, consider 2 x 2 coordination game, say

5 10,20 00
H? =
0,0 1010

(in agreement with the notation in (1.16) below). This game has two pure strategy
equilibria, and one mixed equilibrium, where both players play the mixed strategy
(3,3). The index of any of these equilibria is easily determined by the following two
properties, which hold for any game: A pure strategy equilibrium whidtrist (that

is, all unplayed pure strategies have a payoff that is strictly lower than the equilibrium

payoff) has index-1; The sum over all equilibria of their indices-sl. Therefore, the

mixed equilibrium inH? has index—1. This can also be verified using Definition 1.4.
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Next, anoutside optiorcalledOut is added to the set of pure strategies of player I,

say, giving the game

(1.12)

10,10 00 09

0,0 1010 Q9] '
An outside option can be thought of as an initial move that a player can make which
terminates further play, and gives a constant payoff to both players. If the player has
not chosen his outside option, the original game is played. The outside option payoff
above is 9 for player II. This has the effect that an equilibrium of the original game with
payoff less than 9 for player Il disappears, in this case the mixed strategy equilibrium.
Geometrically, one can consider the upper envelope, i.e. the maximum of the expected
payoffs for the pure strategies of player Il, as functions of the mixed strategy played
by player | as described in Section 1.1. Any equilibrium strategy of player I, together
with its payoff to player Il, is on that upper envelope. The outside option gives an
additional constant function that “cuts off” any former equilibrium payoffs below it.
This is depicted in Figure 1.8. It shows the upper envelope of the expected payoffs
for pure strategies of player Il and the resulting division of player I's strategy space

before and after addinQut to player II's strategy space.

Figure 1.8: Division ofX before and after adding an outside option

In gameG, the original pure strategy equilibria B are unaffected, and continue
to have indext+1. Any such equilibrium, as long as it remains (quasi-)strict after in-
troducing the outside option, keeps its index, as the index of a strict equilibrium can be
defined in terms of the payoff sub-matrices corresponding to the pure best replies (see
Definition 1.4). The mixed strategy equilibrium B is absorbed into an equilibrium
componenwhere player Il plays his last strate@ut. The original mixed equilibrium

strategy(%, %) of player | is part of the outside option component, which is given by
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the set of mixed strategies of player | so tatt is a best response. (&8~ above, itis
easy to see that these are all mixed strategies of player | where each pure strategy has
probability at mos®/10. In general, the outside option component is defined by a set

of linear inequalities, one for each pure strategy of the player who @arys

Let G be some game with an outside option. Then the outside option equilibrium
component of the gam@ by is denoted byC(G). In (1.12), the index o€(G™) is
—1, which is simply the sum of the indices of all equilibria of the original garfe
that have been absorbed into the outside option component, because the sum of all
indices is+1. As described in Section 1.3, the index of an equilibrium component also
equals the sum of indices of equilibria near the component when payoffs are perturbed

generically; this sum does not depend on the perturbation.

It is well-known that the best response structure of a bimatrix game remains un-
changed when adding a constant to any column of the payoffs to the row player, or
a constant to a row of the column player’s payoffs. This will allow to cut off pure
strategy equilibria rather than mixed equilibria by using an outside option. Start with
a2 x 2 coordination game with payofts 1 on and0, 0 off the main diagonal, and add
the constant 12 to the first column of player | and row of player Il, and 7 to the second
column respectively row. The resulting gatdeand a corresponding outside option

gameG are given by

1313 7,12 o [1313 712 Q9
127 88| 127 88 09|

The gameH has two pure equilibria with payoffs3, 13 and8, 8, respectively, and one
mixed equilibrium where both pla(y%, %) with payoffs10,10. The outside option with
payoff 9 for player Il cuts off the pure strategy equilibrium with pay@f8 but leaves

the other equilibria intact. Consequently, the compo@®) has index+1.

Next, one can “destroy” the pure strategy equilibriunGy adding another row

to the game. Consider the games

13,13 7,12 13,13 7,12 09
H' =127 88/, G=|127 88 09].
141 1,2 141 12 09
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Compared tdH, the pure strategy equilibrium with payoft8, 13 is no longer present
in H'. It is replaced by another, mixed equilibrium where player I pleglé) and
player | plays(%,o,%), with payoffs7 to player Il and85/7 to player I. This new
mixed equilibrium has index-1. Since the payoff to player Il in that equilibrium is
less than the outside option payoff 9, that equilibrium disappedgs.iGonsequently,
the component(G’) has indext-2, because the only equilibrium that is not cut off has

index—1.
Finally, consider the following gamid —, which is a symmetrised version bif :

13,13 7,12 114
H =|127 88 21]. (1.13)
141 12 11

In this game, the mixed strategy equilibrium where both players @a%, 0) is the
equilibrium with the highest payoff, yieldint0 for both players. This equilibrium has
index—1. The other equilibria are as follows: The mixed stratégy0, 3) of player |,
which together With(g,%) of player | forms an equilibrium oH’, is no longer part
of an equilibrium as the third strategy of player Il i~ gives a higher payoff. By
playing that strategy as well, one obtains@anpletely mixe@quilibrium where both
players play(1, &, =), with resulting payoffl5/2 to both players. This equilibrium
has indext+1, as has the pure strategy equilibrium with pay@8ff8. There are no other

equilibria ofH .

H~ is used for constructing components with arbitrarily high positive index. For
k> 1, letH K be the game consisting kfcopies of the gamkl ~ on the diagonal and

zeros everywhere else, that is,

H- 0,0 --- 0,0
x 0,0 H™ 0,0
H =" A (1.14)
0,0 00 --- H~™
kcgpies

Each player ha8k strategies irH K. For any nonempty set of tHecopies ofH
and any equilibrium in such a copy, one obtains an additional equilibriubiéfby

suitable probability weights assigned to the copies. All such mixtures involving more
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than one copy, however, give payoffs less tBaifhere are no other equilibria 6f

as the payoffs in a copy &1~ are all positive, and the other payoffs are zero.

The superscript itd ¥ indicates the sum of indices of those equilibria that are not
cut off by adding a suitable outside option. The outside option is, as before, added to
player II's strategy space, and is also referred t@asas an additional pure strategy.
This gives the game

0,9

Gl = |Hk e (1.15)

0,9
The gameG¥t1 hask + 1 equilibrium components: thk mixed strategy equilibria
where both players play strategies 1 and 2 in one copy oWith probability% (yield-
ing a payoff ofl0for both), and the equilibrium component in which player Il chooses
the last strategy, the outside opti@ut. That componen€(G<*1) is given by those
strategy pairs where player Il plagdut, and player | playing such th&ut is a best
response. All isolated equilibria have indexd. Since the indices of all equilibrium
components have to add up to one, the outside option equilibrium compdf@ht?)
has indexk+ 1, which is chosen as a superscript iin (1.15). Therefore, for each
positive integen, the gameGY in (1.15) has a component with indexthis includes

the trivial caseg = 1 andk = O, which is al x 1 game.

The division of player I's mixed strategy spax¥efor the gameG? is depicted in
Figure 1.9. It shows that, except for the equilibrium ver(éx%,O) € X, all other

vertices that are part of an equilibriumH are cut off by the outside option.

Figure 1.9: The division oK for the gameG? with outside option
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A similar, simpler construction gives equilibrium components with arbitrary nega-

tive index. Fork > 2, let HX be the followingk x k game:

(1010 00 .- 00 |
0,0 1010 0
Hk=1] 7 o _ 9 (1.16)
00 00 --- 1010
k columns

Just as (1.15) is obtained from (1.14), one can add an outside option for player I, and

obtain
0,9

= |Hk (k>2). (1.17)
0,9

G (k-1

The equilibria of game&s— (k1 are thek pure strategy equilibria of the coordination
game, yielding a payoff of 10 for both players, and the outside option equilibrium com-
ponentC(G~(k-1)) (see Figure 1.8 for the cage= 2). Since pure strategy equilibria
have indext+1, it follows thatC(G~ (k1)) has index—(k— 1).

Hence, for each negative integgr there exists a game that has an equilibrium
component with indeg. The cas& = 1 gives an empty equilibrium component (which
can be thought of as having index 0), since in this case the first strategy by player I

strictly dominate®©Out. Therefore it is required th&t> 2 in (1.17).

From the above, one can now easily construct a game with a non-trivial equilibrium
component that has index 0. This is done by combining the gathasdH 1 ina
new game by placing them on the diagonal, and adding an outside option for player Il

as before. The cade= 2 is sufficient, so leG° be the following5 x 6 game:

o |H* 0 09
G = . (1.18)
0O H™ 09
As argued after (1.14), the only equilibria®? that are not cut off are those with pay-

offs 10,10in H2 or H™. Thus, by a counting argument, the outside option equilibrium

componen€(GP) has index 0. The constructions prove the following proposition.

Proposition 1.6 For each integen, there exists a (bimatrix) game that has a compo-

nent of equilibria with index.
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In general, index O components are easy to construct (sed aisbin (1.17) for

the trivial case). Consider for example the game

1,1 0,0
0,0 00|

This game is the same &80) in (1.11) and has two pure strategy equilibria, one with
payoff 1 and the other one with payoff 0. It is easy to verify that the equilibrium with
payoff 1 has index-1. It “survives” every small payoff perturbation. The pure strategy
equilibrium with payoff 0 has index zero. The payoffs can be perturbed such that this
equilibrium either vanishes or splits into two equilibria with opposite indices (see also
Figure 1.7). The reason for providir@’ as in (1.18) is that a similar construction is
used in Govindan et al. (2003) in order to show tbatable sets violate a notion of
symmetry. Furthermore, in Chapter 6 it is shown that the outside option equilibrium
component of the gam&? is essential in all equivalent games that do not contain a

duplicate ofOut. However, it is not hyperessential when allowing copie®at.
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Chapter 2

A Reformulation of the Index for

Equilibria in Bimatrix Games

This chapter introduces a new geometric-combinatorial construction for non-degenerate
bimatrix games that allows one to give a new characterisation of Nash equilibria and
index in bimatrix games. Given am x n non-degenerate bimatrix game (assuming

m < n without loss of generality), the construction yields a division of(am- 1)-
simplex in which the Nash equilibria and the index can be characterised by the labels
of player | only. So, for example, ar§x n bimatrix game can be represented by a

division of a2-dimensional simplex using only labels2, 3.

The new construction, which is referred to as thel construction allows an
intuitive definition of an orientation (or index) for equilibria in bimatrix games. It
is shown that the notion of orientation introduced here is the same as the notion of
index introduced by Shapley (1974) (modulo the sign in the definition as explained in
Remark 1.5). It is also shown that the L-H algorithm by Lemke and Howson (1964)
that finds an equilibrium in a non-degenerate bimatrix game can be interpreted as a
path-following algorithm in the dual construction. This allows one to visualise, in
dimension3 or lower, both the index and the L-H paths for allx n non-degenerate
bimatrix games wittmin{m,n} < 4, whereas the interpretation of L-H paths and the
definition of index by Shapley, or the interpretation by Savani and von Stengel (2004)

by symmetrising games (see Section 1.3), uses geometric objects in dimension
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n— 2. Furthermore, it illustrates how non-degenerate bimatrix games fit into the study

of solutions of piecewise linear equations as in Eaves and Scarf (1976).

This chapter is basic for the results in the subsequent chapters. Later, Chapter 3
shows how the results of this chapter are related to Sperner's Lemma in dimension
(m—1). In Chapter 4, the construction is used to give a strategic characterisation of
the index in non-degenerate bimatrix games. Chapter 5 shows how the dual construc-
tion can be extended to outside option equilibrium components, which is applied in
Chapter 6 to show that an outside option equilibrium component is hyperessential if

and only if it has non-zero index.

The structure of this chapter is as follows. In Section 2.1 the dual construction is
introduced and described in detail. Section 2.2 gives a characterisation of the Nash
equilibria in the dual construction. Using only labels of player I, it is shown that the
Nash equilibria are given by the fully labelled points in the dual construction (Proposi-
tion 2.6). Section 2.3 re-interprets the Lemke-Howson (L-H) algorithm and shows that
it yields a connected path in the dual construction (Proposition 2.7 and Lemma 2.8).
Finally, in Section 2.4, a notion of orientation for Nash equilibria is given. It is shown

that it is equivalent to the notion of index defined by Shapley (Proposition 2.10).

2.1 The Dual Construction

This section describes a new geometric-combinatorial construction for non-degenerate
bimatrix games. Put briefly, the subdivided strategy simpleg dualised to obtain a

dual spacéX”|. Vertices inX become simplices ifX*|, and best reply regions
become vertices ifX%|. There are two equivalent ways of construct{ixg*|. One

uses polar polytopes, the other one is a combinatorial dualisation methodXfhito

one then inscribes those facesrahat are of strategic relevance for the game, yielding

a divisionX” of the dual space into labelled best reply regions for player I. The final
construction has the same dimensiotXamd uses only labels of player I. The division

into simplices reflects the best reply structure for player Il, the division of the simplices

into labelled best reply regions reflects the best reply structure for player I. Combining
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these two, the Nash equilibria are represented by completely labelled points in the dual

construction.

The dual constructiofX”| can be obtained by using a polarisation method for
polytopes (see e.g. Ziegler (1995, Section 2.3)). A combinatorial dualisation method
is described further below. In brief, when polarising a polytope, vertices become sim-
plices and facets become vertices. The polytope itself is obtained from the best reply
polyhedronH in (1.5) that is given by the upper envelope of player II's expected pay-
offs overX. The polyhedrorH is neither bounded nor full-dimensional. Since full-
dimensional polytopes, i.e. bounded and full-dimensional polyhedra, are more conve-
nient to study, the polyhedrdr can be projected in order to obtain a polytdpéhat
contains the same information lsand that is full-dimensional and bounded. This de-
scription is similar to von Stengel (2002), which also gives references to related earlier

works.

The polyhedrorH as in (1.5) is defined as
H={(xv)eR™"xR|1Ix=1 B'x<1w, x >0Vicl}.

Without loss of generality it can be assumed that 0 for all (x,v) € H, since adding
a positive constant to the entries Bfdoes not affect the equilibria or the best reply

structure of a game. Now consider the set
PP={xeR™B'x<1,% >0Viel}. (2.1)

The mappingd — P’ — {0} is given by(x,v) — %-x, and the invers® — {0} — H is
given byx+— (ﬁ, |x|) , where|x| = 1. x. The vertex0 of P’ corresponds with “infinity”
overH. The set?’ is described by a finite number of inequalities and is both bounded
and full-dimensional. Hence, the $&tis anm-dimensional polytope. Geometrically,
the polytopeP’ is the projection of the polyhedrdd on the hyperplane described by

v=1. This is depicted in Figure 2.1.

In order to obtain the polar (or dual) of a polytope of dimensiiit is convenient
if 0 RMlies in the interior of the polytope. This is not the case for the polyf#pbut

can easily be obtained by translating the polyt&péo obtain the desired polytoge

1

Consider the poinf,..., £ ¥) € H with V= max jbjj +c, wherecis some arbitrarily

large positive constant. The projection of this point is giverkby (n_‘lw e n—xlw) eP
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Figure 2.1: The projection of the polyhedrbhand the polytop&

and lies in the interior oP’. So one can translaf by —X to obtain
P={xeR"|B'(x+R) <1y x+%>0Vicl}.

Note that every other point in the interior Bf could be used for the translation. Then
0 < R™Mlies in the interior ofP. The polytopeP is referred to as theest reply polytope
A depiction ofP is given by the dotted lines on the right in Figure 2.1. The inequalities

that describd® can be rewritten to obtain

v . X .
P:{xeRmyv EB]TxgleeN;—rrwglwel}, (2.2)
—Bj

whereB; = &n?" is the average payoff for player Il in colunjn
In general, leP be a polytope given by
P= {zeRm|csz§ 1, 1<k< n}.

Geometrically, the polytop® is defined by halfspaces, which are given by hyper-
planes. The vectors; € R™ are the normal vectors of these hyperplanes. fdiar
polytopeP” of the polytopeP is defined as the convex hull of the normal vecigysf

the hyperplanes that descriBei.e.
P2 = conv{cy,...,Cn}. (2.3)

One can show that the polar of the polar polytope is the original polytop@/ie = P
(see e.g. Ziegler (1995, Theorem 2.11)). Note thatR™ lies in the interior ofP, and
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hence in the interior oP2. A depiction of the polar polytope for a given polytope is

given in Figure 2.2.

Figure 2.2: The dual of a polytope

For a non-degenerate bimatrix game, the polyB@es in (2.2) is simple, i.e. each
vertex of them-dimensional polytop® is described by exactlyn binding linear in-
equalities, so each vertex is contained in exactfacets ofP. Consequently, the polar
P2 is simplicial (see e.g. Ziegler; Proposition 2.16). Each vertdR‘otorresponds to

a facet ofP, and each facet &#*, representing a vertex B, is an(m— 1)-simplex.

The study of polytopes is a very useful tool in the analysis of games. Von Stengel
(1999hb), for example, uses cyclic polytopes to construct games in order to obtain a
new lower bound on the maximal number of Nash equilibriadad non-degenerate
bimatrix game. Savani and von Stengel (2004) employ a related method to construct

games in which L-H paths are exponentially long.

The simplicial surface of the polar polytof®* can be projected on the facet of
P~ that is given by thém— 1)-simplex spanned by the verticesmig, i € |, where
g denotes the unit vector iR™ with entry 1 in row i. The projection is defined by
the intersection of the line between a pairand (—nV) 1y, with the facet spanned by
—mVe, i €| (see Figure 2.3). This yields a triangulation of the facet spanned by the
vertices—nwa, i € |. A triangulation(or simplicial subdivisiohof a simplex is a finite
collection of smaller simplices whose union is the simplex, and that is such that any
two of the simplices intersect in a face common to both, or the intersection is empty.

The vertices of a triangulation are the vertices of the simplices in the triangulation.
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Figure 2.3: The simplicial division ok*

mi0l,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(-mv,-m¥)  (0,-mY)

Definition 2.1 The simplex spanned bym¥g, i € |, is denoted aX“. The triangula-
tion induced by the projectioR™ — X — X2 is denoted a$X”|, and referred to as
the dual construction. The facets®f other thanX”, which are(m— 1)-simplices,
are denoted ag”. For notational parsimony, their projections o, which are also

(m—1)-simplices, are also denoted 5.

An illustration of | X* | is depicted in Figure 2.3. The verticesnig correspond to the
facets ofP that represent unplayed strategies. All other verticeB“btorrespond to
facets ofP that represent best reply facetskbf Each vertew # —X of P represents
a vertex ofH, and hence a vertex in the division ¥f into best reply regions. So
each vertex in X or H corresponds to a uniguen— 1)-simplexv”® in |[X“| or on

the surface oP”. The simplexX® represents the vertexX € P, and is spanned by

—nmvg,iel.

The induced triangulatiohX*| is regular. A triangulation is callecegular if it
arises as the projection of a polytoQewhose facets are simplices (see e.g. Ziegler
(1995, Definition 5.3)). The simplices {X*| are the projections of the facets®ef.
Essentially, the projectiofX®| is a so-calledSchlegel-diagranof P> that is combi-
natorially equivalent to the compledP” — X2 (see e.g. Ziegler (1995, Proposition
5.6.)), wher&dP~ denotes the boundary &f".

Now suppose one has a regular triangulai)ft| of X*. Assume that the only
vertices of the triangulation that lie on the boundaryéf are those that spaf, i.e.

—mve, i € . Then one can obtain a payoff matBxthat induces this subdivision. For
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this, consider the polytop® that induces this triangulation. Without loss of generality
it can be assumed thate Q. Otherwise the vectors other tharmve, i € |, can be
moved in the same manner along the projection line. TQda the polar polytope

P~ of a polytopeP. The polytopeP” is given byconv{cy,...,cn} (see (2.3)), where
the firstm vectors are given by-mve, i € | (these are the vertices ). Given a
polytopeP%, the following lemma shows how one can construct the corresponding

payoff matrixB that yieldsP” as the polar of the polytog@ given in (2.2).

Lemma 2.2 ConsiderP” as in (2.3) with0 € P2, and let the firsm vectors be given
byc = —nwe, i € |. For all othercj, j > m, let (¢j)i > —mV Vi € |, where(cj);
denotes theé-th row ofcj, and letc; > —V, wheret; = %f‘ ThenP” is the polar of
the polytope in (2.2) with X
Bj = \7—|\—/Cj

Cj. (2.4)

Proof. By definition, one hag-%-B; = ¢; for all j > m. This implies that-B; =<;,
Pl g

S0B; = g7/5,Cj. Substituting this intd®; = (V—_—vﬁj) ¢j yieldsB; = ¢/-cj. Note that the
first mvectors are; = —nwWeq, i € |, and give the inequalitiesmux < 1in (2.2).

TranslatingP as in (2.2) by(:,..., %) gives the polytope® as in (2.1) with

(..., ) lying in the interior ofP’. FromP’ — {0} one obtaind via x (ﬁ, |x|>.
. . 1 1 A . .

So the upper envelogg satisfiesy > 0 for all (x,v) € H, and(s;,..., V) lies in the

relative interior ofH with ¢ > B; V j € N. O

The above construction shows that each strategy sinXle&n be dualised in a
way such that one obtains a regular triangulat)®| of an (m— 1)-simplex. This
construction is such that the verticesXfcorrespond to the simplices X% |, and
the best reply regions and unplayed strategieX ioorrespond to vertices ifX%|.
Furthermore, an edge X that connects verticeg andv, in X corresponds to the

common(m— 2)-face of the two adjacerftn— 1)-simplicesvlA andva in X2

The important aspects (X | are the combinatorial properties of the simplices and
vertices inX”|. A combinatorial equivalent gX*|, which, for notational parsimony,
is also referred to dX*|, can be obtained without using the polarisation method from
above. Instead, it can be derived directly from the divisioX a@fito best reply regions.

To illustrate the procedure, it is applied to the following example.
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Example 2.3
0,0 1010 00 10-10
1000 00 010 08 (2.5)
8,10 00 100 88

Take player I's standardm — 1)-simplex representing the mixed strategy spce
ThenX can be divided into best reply regioXsj). Non-degeneracy implies that the
number of best replies in a vertexc X equals the number of strategies played with
positive probability inv. Figure 2.4 gives the division of into best reply regions for
player Il for the game in Example 2.3. It shows that every vevtexX has exactlym
labels, where the labels of a vertex X are the pure best reply strategies of player Il
with respect tov and the pure strategies of player | not played.inThe labels of a

pointx € X are given byL(x) as defined in (1.3).

Figure 2.4: The best-reply division &f for the game in Example 2.3

A combinatorial dualisation oX is now obtained as follows. For each best reply
region and each unplayed strategy, one chooses a representative deifitlinhat
serves as a vertex i{X”|. For best reply regions, these representatives are denoted as

X(j)”. For an unplayed strateg\c | the representatives are denotedk&g”.

The pointsX (k)*, for k € 1 UJ, that are corresponding to best reply regions or
unplayed strategies, now become the vertices in the du§) b each such vertex has
label k. For every vertew € X with labelsL(v), the combinatorial dual simplex*
is the simplex spanned by the dual vertidé)”, with k € L(v). For two vertices/,

andv; that are joined by an edge with lab&ls/;) NL(v2) in X, the two combinatorial
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simplicesvlA andv2A are adjacent and share tfm— 2)-face that is spanned by the

dual vertices representing the labkls;) NL(v2) in X2,

For the game in Example 2.3, the triangulati]mﬂ is illustrated in Figure 2.5.
The dotted lines in Figure 2.5 show the divisionXfinto best reply regions. The
solid lines illustratgX”|. The best reply regions i and those labels that represent
unplayed strategies become dual verticelif|. Each vertex irX is represented by a
unique(m— 1)-simplex in|X*|. The edges iXX becomgm— 2)-faces of two adjacent

simplices in|X%|.

Figure 2.5: The triangulation of~ for Example 2.3

If a vertex of a simplex” is of the formX(i)*, for somei € 1, it is called arouter
vertexof v2. Outer vertices of™ represent those strategies of player | that are played
with zero probability inv. The (m— 1)-simplexX* is spanned by all outer vertices
X(i)2, i € 1. Accordingly, theinner verticesof a simplexv” are of the formX(j)%,
for somej € J. The inner vertices of a simplexX® represent best reply strategies of
player II. All simplicesv® have at least one inner vertex, simplices representing a pure

strategy of player | have exactly one inner vertex.
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2.2 Labelling and Characterisation of Nash Equilibria

The aim is now to divide the simplex” into regions with label$ € | such that the
Nash equilibria are represented by fully labelled points. As above, it can be assumed
that all entries of the payoff matriA are strictly greater than zero. Now consider

a simplexv® € |X%|. An inner vertex that represents the pure strategy efN of

player Il has the corresponding payoff colusp The outer vertices do not represent
payoff columns ofA and are dealt with by introducing slack variables. Each outer
vertex that represents a pure strategyl of player | played with zero probability is
assigned aatrtificial payoff vectorg, i.e. the unit vector ilR™ with entry 1 in row i.

So supposé(v) = {iy,...,ix}, sov” is spanned by outer verticégir)>, ..., X(ix) >

and some inner vertice$(jik.1), ..., X(jm)>. The payoffs for player | with respect

to pure strategie$y1,..., jm are given by the columng,;, ,,...,A; of the payoff
matrix A. The artificial payoffs for player | with respect to the unplayed strategies

i1,...,ix are defined ag,, ..., &,. Let A(v) be the followingartificial payoff matrix
AV =le, -~ & A, ---Ajm} . (2.6)

This artificial payoff matrix now allows one to divide each simplkéxinto labelled

“best reply” regions with labelse I.

Definition 2.4 A point in v~ is denoted asvs, described by its convex coordinates
with respect to the vertices of* (the subscript “s” indicates thatvs contains slack

variables).

Then every simplex” can be divided into labelled regions according to
VA (i) = {ws e v* | (A(V)We)i > (A(V)We) V ke 1}, (2.7)
This is the same division as the division of player II's mixed strategy space in the case

A(v) is the payoff matrix of player | in some bimatrix game.
Dividing each simplex” in |X|, this gives, by non-degeneracy, a divisionXst
into full-dimensional regionX (i) with labelsd, ..., m, where

X2 (1) = | J v2(i).

veV
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Figure 2.6: The labelled dual constructi¥ft for Example 2.3

This division is well-defined, since, if two simplice@ andva share some common
face, the induced division on that face is the same in both simp@mdvﬁ. For

the game in Example 2.3 the resulting divisionXdt is depicted in Figure 2.6.

Definition 2.5 The division ofX” into labelled regionsX”(i) is referred to as the
labelled dual construction, and is denoted 8. A pointws € X2 is assigned the

labelsl (ws) of those regions that contains, i.e.

L(ws) = {i €l |wse X2(i)}. (2.8)

For each simplex”, the innerk+ 1 (for somek > 0) vertices ofv”* span somé-
face ofv2. Thisk-face is referred to as theest reply facef v2 and is denoted a8,
So the best reply facé®™® is spanned by exactly those verticesvéf that represent
a best reply strategy of player Il with respect to strategyrhe best reply facg®”
corresponds to the face ¥fthat is spanned by those pure strategies of player Il that
are represented as vertices8f*. So eactw € VP can be identified with a unique
strategyy € Y of player II. The division of/” into labelled regions also yields a division
of VP into labelled regions. These labelled regions are affine linear transformations
of the division of the face o¥ into best reply regions that correspondsv8&”. It
should be noted that if a poimt lies on the best reply face of a simplek, then the
set of labeld (w) as in (2.8) is the same &é&w) in (1.1).
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The spacé(*A together with the labelling function in (2.8) now allows a complete
characterisation of the Nash equilibria of a non-degenerate bimatrix game. Before
proving the main result of this section, it should be noted that all pewthat lie in
the interior of X2 and in somev® can be projected on sonvee VP2 by dropping
those coordinates that are the slack variables associated with artificial payoff vectors
and normalising the resulting vector such that its entries suln & letws € v*. Let
the set of outer vertices of beX(i1)*, ..., X(ix)*, and let the set of inner vertices of
V2 beX(jkr1)?, ..., X(jm)2. Note that for all simplices”, the set of inner vertices
is non-empty. So letvs = (Wsg,...,Wsy), Where the firsk entries are the coordinates
with respect to the outer vertices, and the last k entries are the coordinates with

respect to the inner vertices. Then define the projeqtiow) as

w;=0 : 1<i<k
W= p(we) = N _ (2.9)
Wi:m ;o kK+1<i<m

The projection pointv = p(ws) € VP can be identified with a unique strategy vector
in Y. Forws on the boundary oK’, one definep(ws) = 0 € R™. This allows the

following characterisation.

Proposition 2.6 A pointws € X2 with Ws € V2 is completely labelled if and only if

(v, p(ws)) is a Nash equilibrium of the game.

Proof. Letws be completely labelled wittvs € v©*. Then consider the artificial payoff
matrix A(v). A point is, by definition, completely labelled A(v)ws = cl, wherec is
some positive constant. It is easy to verify that the payoff&(@f are non-degenerate,
since the payoffs oA are non-degenerate. Heneg lies in the interior ofv>. By
construction one has = p(ws) € VP2, It implies thatl (w) = | —1(v), wherel (v) is
as defined in(1.2). Sincew lies on the best reply face of*, it means that player II
mixes only those strategies with positive probabilityuthat are a best reply o So,

using(1.1) and(1.2), one has
we V™ — J(v)uJ(w) =J. (2.10)

This is to say that player Il is always in equilibrium when considering points in the
labelled dual construction. But théfw) =1 —1(v), sol(v)Ul(w) =1. This means

that(v,w) is completely labelled, and hence an equilibrium.
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Now let (v,w) be a Nash equilibrium. Theh(v) UJ(w) = J, sow € V*'*. Since it
is a Nash equilibrium, one hagv) = —I(w). SoA(v)w is a vector with maximum
entries in those rows that are strategies played with positive probability iret ¢
be this maximum entry. Now assign weights to the columns representing unplayed
strategies to obtain a strictly positive vectérssuch thatA(v)Ws = c1,. Normalising
the vectorws such that the entries add up to one yields the desired vegtavith

I(ws) =1. O

For the game in Example 2.3, the labelled dual construction is depicted in Fig-
ure 2.6. For the following description, the coordinatesvgtarry a subscript, marking
the payoff vector they apply to. So, for example, the subsctifts3 refer to artificial
payoff vectors, and the subscrigtb, 6, 7 refer to payoff columns 0. The construc-
tion contains three completely labelled points, nanvey= (( )1 (9—0) (920)7) lying
in the simplex/> representing = (0,1, 8), the pointws' = ()4, ()s, (£1)6) lying
1

(3:3:3), andws” = ((39)2. (39)3, (37)s) lying in the

simplex representing’ = (1,0,0). Projecting these vectors gives= (5,0, 0,3), the
pointw = (3, 11 7, 0) andw” = (0,1,0,0). So(v,w), (V,w) and (V',w") are the

Nash equilibria of the game.

in the simplex representing =

Instead of labelling the dual constructidd”|, which consists of the projected
simplicial facets of the polar polytope”, one can also label the simplicial facets of
P~ directly via the artificial payoff matrix. The division of each simplicial faceP6f
is obtained in the same way as the division of the projected simplices. The result of

this construction is depicted in Figure 2.7 for the game given by the payoff matrices

100 6 4 1
A= i B= .
[Oll] [135]

The resulting labelled surface of the polar polytope is denote® aslts simplicial
surface is denoted g8”|. In this construction, the equilibria are, as before, repre-
sented by exactly those points on the surface of the polar polytope that are completely
labelled. The artificial equilibriuni0, 0) can be identified with the completely labelled
point on the faceX” of P2, Note thatx® corresponds to the vertex &f that has

all labels of player I, i.e. no strategy of player | is played with positive probability. So

the artificial payoff matrix that corresponds to this facet is the identity matrix that only
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consists of artificial payoff vectors. Its centre is a completely labelled point. So, in-
stead of considering the projection of the labelled facets, one might as well characterise

the equilibria using the “labelled spher‘éﬁ.

Figure 2.7: The labelled polar polyto;5€

The labelled dual construction allows one to completely characterise the Nash equi-
libria of a non-degenerate bimatrix game in a geometric object of dimensiot by
using only the sek of labels of player I. Assuming without loss of generality< n,
it is possible to visualis&” for all m < 4. It also demonstrates how non-degenerate
bimatrix games fit into the study of solutions of piecewise linear equations as in Eaves
and Scarf (1976), and allows one to illustrate how one can find a Nash equilibrium of

a non-degenerate bimatrix game.

2.3 The Lemke-Howson Algorithm in the Labelled Dual

Construction

The L-H algorithm described in Section 1.2 is the standard algorithm for finding a Nash
equilibrium in a non-degenerate bimatrix game. The L-H algorithm describes a path
in the product spac¥ x Y (or Xp x Yo when including the artificial equilibrium points)
that is given by a set of poin{s,y) € X x Y that is described by labelgx) UL(y) =

| UJ— {k} for somek € | UJ. This path consists of pairs of edges and vertices in the

product graph.

The fact that the L-H algorithm applies to a product graph makes it difficult to
visualise it for games of higher dimension. In this section, it is shown that every L-H

path inX x Y that is defined by a missing labek | of player | can be interpreted as a

50



path in the labelled dua\(*A that consists of paths that are almost completely labelled
with missing labek. This allows one to give a new geometric interpretation not only
of the L-H algorithm but also of the fact that equilibria at the ends of an L-H path have

opposite indices (see Section 2.4 below).

Similar to the definition oM (k) in (1.9), one can define the set of almost com-
pletely labelled points on the labelled surfaeée for a missing labek of player I. So
let M(k)f, for k € 1, denote all those pointss in P that have at least labels- {k},
ie.

M(K)2 = {ws € P2 |1 —{k} C I(we)}. (2.11)

One obtains the following proposition (compare Theorem 1.3).

Proposition 2.7 Let G be a non-degenerate x n bimatrix game. Fix a labek €
l. ThenM(k)*A consists of disjoint paths and cyclesl?@ The endpoints are the

equilibria of the game, including the artificial equilibrium.

Proof. As before, letP”| denote the simplicial surface 8. Since the payoff ma-
trix A(V) is non-degenerate for all simplices in |P>|, the set of aimost completely
labelled points i/~ with a missing labek is, if not empty, an edge (or line segment)
in v®. Now take an endpointis € v** of an edge inv® with labels! — {k}. Then
there are two cases. The first is whevelies in the interior ofv®. In this casews
represents an equilibrium and is fully labelled. 8gis endpoint of a unique edge in
v2. The second case is whang lies on the boundary of”. In this case, due to the
non-degeneracy assumption, the paigties in the interior of somé¢m— 2)-face of
v2. This (m— 2)-face is the face of another simplg* in |P2 | that is adjacent tg”.
Inv~, the pointws must be the endpoint of another edge with labbels{k}. So the
endpoints of edges cl\ﬂ(k)*A in v2 are incident to one or two edges I\zllf(k)*A in P>

[

Note thatX’” is just a projection of the labelled facetsRff — X% onX. So the
paths and cycles iX” with labelsl — {k} are projections of the paths and cycles in
P2 — X2 with labelsl — {k}. For notational convenience, the projection of these paths
and cycles inrX” is also denoted aM(k)*A. Equivalently, one can defiriitfd(k)*A =

{ws € X5 | I —{k} C I(ws)}. The endpoints of the paths X{* are the equilibria of
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the game, not including the artificial equilibrium, since the artificial equilibrium lies
on the faceX” on whichP”~ — X2 is projected. l.e. the artificial equilibrium is not
seen under the projection and can be thought of lying uXderIn the same way as

above one can confirm thaft(k)*A in X© consists of paths and cycles.

The following lemma shows how the definitions Mf(k) andM(k)*A are related.
This yields a straightforward interpretation of the L-H algorithm on the labelled surface

P,ﬁA and in the labelled dual constructi@(t;f.

Lemma 2.8 Equilibria that are connected by a L-H path M(k) are connected by a
path in M(k)f. An edgeex x {w} € M(K) is represented i|1VI(k)*A by two adjacent
simplices. An edgév} x ey € M(k) is represented invl(k)*A by an edge i with
labelsl — {k}.

Proof. First consider an edgex x {w} € M(K). Thenex is an edge irKo. Let this be
an edge inX betweerv; andv,. Edges inXg are represented iiX* | and|P%| by an
(m—2)-face that is common tmlA andVZA. As for the edge that connects the artificial
equilibrium with a pure strategy, i.e. the edge betw@and a pure strategy note that
every pure strategyis represented ifP”| by a simplexv” that is adjacent tX*, the
latter representing the artificial strate@y R™. In X2 this is reflected by the fact that
v® has an(m— 2)-face on the boundary of”. So, if (v1,w) and(v2,w) lie along a
L-H path, then\/lA andv2A are adjacent and share tfra— 2)-face that corresponds to
the labeld-(v1) NL(v2). So the L-H path irXp yields a union of adjacent simplices in
X2 | and|P2.

Now suppose one hag,w) € M(k). Let(v,w) € X xY. Then, by the equivalence in
(2.10), one haw € VP, This point corresponds to an almost completely labelled point
ws = | (w) € v* in the labelled dual construction. To see this (i&g),, k € 1 (v) UJ(v),
denote the row ofvs that corresponds to the column Afv) that represents strategy
k. Also, letwy, k € J(v), denote the probability with which strategyis played inw.
Then define
~ W ke J(v)

{ c— (Awy kel(v)
wherec is the maximum payoff for player | when player Il plays and (Aw) is the

payoff for player | in strategk. In v, a strategyk € | (v) has probability zero. So, for
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k € 1(v), the expected payoff for the unplayed stratégg (Aw)k. Normalisingl (w)
yields the vectows = | (w) such that (ws) = | (v) Ul (w), sows € M(k)f. Therefore,
the mappind(w) is a lifting of w € VP™ to a pointws € v>* such that (ws) = | (V) Ul (w)

(compare the projectiopin (2.9)).

Now consider an edggr} x ey € M(k) that connect$v,wy) and(v,wz) with wy # 0
andw, # 0. By the equivalence in (2.10) one sees that e VP2, so the edge lies
on the best reply face of*. But that means thdi{ey) is an edge i/ connecting

[(wyp) andl(wo).

It remains to show that these lifted edges yield a connected path in the union of
simplices that correspond to the L-H pathXp. So letw be an endpoint of the edge

ey. Then one can distinguish two cases.

The firstis wheré (v) N1 (w) = {i}. In this case the paiv,w) has a duplicate label
i of player I. This means that strateggf player | is a best reply, but is not played with
positive probability inv. Therefore, one ha@w); = ¢, sol (w); =0, i.e. the lifted point
[(w) lies on the(m— 2)-face where the weight on the artificial payoff vecépis zero.
So it lies on the(m— 2)-face that corresponds to labélév) — {i}. This represents
the edge inXp that is described by labelgv) — {i} and connects and another vertex
Vv, with (v,w) and(V',w) both lying along a L-H path iM (k). So the lifted point is

adjacent to two edges, onevf and one i/~

The second case is wher@/) NI (w) = 0. In this casgv,w) has a duplicate label
j of player II. This implies that strategyof player Il is a best reply, but is not played
with positive probability. Thereforay; = 0 and hencé(w); = 0, i.e. the lifted point
| (w) lies on the(m— 2)-face ofv” where the weight on the payoff vectsy is zero.
So it lies on them— 2)-face that corresponds to lab&ls/) — {j}. This represents the
edge inXp that is described by labelgv) — {j} and connects and another vertex,
with (v,w) and(V,w) both lying along a L-H path iM(k). So the lifted point is also
adjacent to two edges, onevf and one i/~

Finally, one has to account for the simplices adjaceit‘toand the artificial equi-
librium. The L-H path with missing labekt that starts in the artificial equilibrium is

such that, after two steps, it yields the p@irw), wherev represents pure strate@y

andw is the pure best reply ta Then eitherv,w) is an equilibrium, in which case the
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completely labelled point iw” is connected with the completely labelled poindif

via an edge i/ and an edge iX”. If (v,w) is not an equilibrium, pure strategy

is not a best reply to pure strategy The lifted pointl (w) lies on the(m— 2)-face of
v> that corresponds to labelgv) — I (w), and is also connected with the completely
labelled point inX2 via an edge in/® and an edge ixX”. For pure strategies and

w such that(v,w) is an equilibrium, the completely labelled poing in v connects
with a point on thelm— 2)-face corresponding to labelgv) — {k}. This is also the
(m— 2)-face ofv'> such thaiv,w) and(V,w) both lie along a L-H path iM(k). [

Figure 2.8: The L-H paths fdt=2in X2

The above lemma can be illustrated by considering the pﬂ(@f for the game
in Example 2.3. This is depicted in Figure 2.8. According to the L-H algorithm, one
starts at the artificial equilibriundgg = 0,wp = 0 and looks at the path that has labels
1,3. Dropping label2 means that one flips from the artificial equilibrium simplex
X2 into the simplexvlA that represents pure strate®wf player I. Therv; has labels
1,3,6, since6 is a best reply to pure strate@y andwg has labelst,5,6,7. Hence6
is a duplicate label. This determines. Strategyw; represents the pure best reply to
pure strategy, which is6. Sow; = (0,0, 1,0) with labels4,5, 7,3, since pure strategy
3is a best reply tavy. In X2, this is represented bys;. Now 3 is a duplicate label.

This determines the simplebf by flipping over the face that corresponds to vertices
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representing strategidsand6. Thenv, has labeldl, 7,6. Now 7 is a duplicate label,
determiningw,. The strategyw, is the mixed strategy that mixes strategéeand7,
with best repliesl and 3. In X*A, this givesws,. Now w» has labels$,4,1,3, sol

is a duplicate label, which determin@. The simplexvff is the simplex adjacent to
v2A with common face spanned by vertices represerfiiagd7. This is the simplex
spanned by vertices representidg, 7. Now 4 is duplicate, which determiness

in which pure strategy is played with positive probability. le*A, this giveswss.
Strategyws has labelg}, 6,1,3, so now6 is a duplicate label. Flipping over the face
of v? that is spanned by verticdsand7 givesvf spanned by vertices representing by
4,7 and1. Finally, labell is duplicate, determiningis with labels5, 6, 2,3, which, in

X2, is representedsis,. The tuple(va,wy) is an equilibrium of the game.

This reinterpretation of the L-H paths)(f also allows one to illustrate why Nash
equilibria might be inaccessible in the sense that they are not connected via a union
of paths with the artificial equilibrium as noted by Shapley (1974). An example for
this situation is depicted on the left in Figure 2.9. The union of thﬁ%(k), for
k €1, is depicted in bold lines. The game represented on the left in Figure 2.9 has
three equilibria, one pure strategy equilibrium and two in which player | plays all three
strategies with positive probability. Starting at one mixed strategy equilibrium, every
path inM*A(k) always leads to the other mixed strategy equilibrium and vice versa. So
for k € 1, the L-H algorithm only finds the pure strategy equilibrium in which player |
plays only pure strategy (the equilibria might not be isolated when considering paths
M(j) for j €J). X2 can also be used to show th(k) might contain cycles. This is
depicted on the right in Figure 2.9, which illustrates a cycle with labgsn M*A(Z).

2.4 An Orientation for Nash Equilibria

This section gives a re-interpretation of the index by means of the labelled dual con-
struction. This allows a simple visualisation of the index for amy n bimatrix game
with m < 4, sinceX’ is of dimensionm— 1 for an mx n bimatrix game. Further-
more, this re-interpretation of the index extends to certain components of equilibria,
namely outside option equilibrium components in bimatrix games (Chapter 5). This

re-interpretation of the index is then employed in Chapter 4 to obtain a strategic char-
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Figure 2.9: Inaccessible equilibria and cycles(fﬁ

acterisation of the index in non-degenerate bimatrix games and in Chapter 6 to obtain

a characterisation of hyperessentiality in terms of the index.

The definition of the index ir)l(*A is similar to the index as depicted in Figure 1.5,
i.e. itis defined by the relative ordering of the labels “around” an equilibrium. Consider
a completely labelled pointis € X2 that represents an equilibrium. Note that in this
casews lies in the interior of some uniqué*. One now constructs a simplw@ such
that it containsws and such that each vertexwﬁ lies in a different best reply region
of v, Comparing the orientation of this simplex with the orientation induceX 8y

then yields the index of the equilibrium representedhy

The simplexvvs,A can be obtained as follows. Let € v©* be completely labelled.
Fori € I, letw; denote the vector, described as a convex combination of the vertices
of V&, such that the payoff for player | from the artificial payoff matrix is such that
A(v)w; has the maximum entrg},,.,.in row i, and is the same constanit< ., in all
other rows. Such vectors exist:Mf is completely labelled, extend the edge with labels
| —{i} into the best reply region with label Then any point that lies on the extension
of the edge in the best reply region with labéhas this property. If a labele |
represents an unplayed strategy, choose the vertéx dhat represents the unplayed
strategyi. In this casew; is itself a unit vector such th#t(v)w; = g. The construction
of WSA is depicted in Figure 2.10, in which labg&lrepresents an unplayed strategy.
Thenws' is the(m— 1)-simplex spanned by, i € 1.

Now label each vertew; with labeli. This means thats' is an(m— 1)-simplex

whose vertices are completely labelled, i.e. have all labells This induces an order-
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Figure 2.10: The construction mfs&

ing of the vertices ofv". The simplexX” is also ar(m— 1)-simplex that is completely
labelled, spanned by the verticesnvg with labeli, i € I. To define the orientation in
X*A, choose the orientation &f” as the standard orientation. The expression (1.7) for
the vertices oK~ is given by(—1)™. Let the coordinates af; with respect to the unit
vectors be given byt'. So, ifvy,..., vy are the vertices of>, described as column
vectors with respect to the unit vectors, theh= [v1,...,vm/W;. Then the index of an

equilibrium is defined as follows.

Definition 2.9 The index of an equilibrium representedvaye< X2 is +1if ws' lies in
the same orientation class ¥, and it is—1 otherwise. That is, the index is defined

as

sign(—1)" detwy, ..., wh] = sign(—=1)" defva, ..., V| [W1, . . . , Wiy (2.12)

Proposition 2.10 below shows that the index in Definition 2.9 is the same as that
in Definition 1.4. It follows that the index as defined here does not depend on the
particular vertices o‘#vsA chosen. Furthermore, the index is well-defined and does not
depend on whether one usés orY.. Italso follows that the definition is independent
of the labelling of the strategies. This can also be seen as follows. Re-labelling the
strategies of player | would induce a re-labelling of regions(ﬁl without affecting
them as such. Therefore, a re-labelling of the strategies induces the same re-labelling

of the vertices oK~ as of the vertices on_?

57



An illustration of Definition 2.9 is given in Figure 2.11. The pure strategy equi-
librium where player | plays pure stratedy represented bw’s, has index+1. The
labels aroundV’s read1, 2,3 in anti-clockwise direction, and so do the labels of the
vertices ofX2, which are the corners (X*A. The labels around/s readl, 3,2 in anti-
clockwise direction od, 2, 3 in clockwise direction. Hence the index is defined-ds
The labels aroundss are oriented as the labels of the corner&of, hence the index

is +1.

Thus, as described in Section 1.1, the index can be identified with a permutation
of the labeld. In particular, if, for example, strategies..., ik, are played with zero
probability in an equilibriunws, then the(k— 1)-face ofvvsA that is spanned by the ver-
tices ofvvsA representing labels, ..., iy is the same as thg — 1)-face ofX” spanned
by the outer vertices representing labils. . ,ix. Choosing the orientation &f* as
the standard, this implies that the associated permutation of the laisdlse identity
on the subsefiy,...,ix}. It follows that pure strategy equilibria have index. If
(v,w) is a pure strategy equilibrium in which strategyf player | is played with prob-
ability 1, the permutation of the labelss the identity on the labels— {i}. But then
it must be the identity oki}. So the permutation is the identity and has sigh This
can also be verified using the expression (2.12), noting that the entrvésak less

than zero.

Figure 2.11: The index M*A for Example 2.3
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The above definition of index uses the orientatior)(ﬁ, which is the projection
of the labelled surfac®”. One can also define the orientation by using the labelled
surfaceP” directly. In the same way as the simplm§ is constructed iX>, one can
constructvvsA in P*A such that it lies on the facet™ of P~ that containsvs. These

simplices are also denoted s .

To define the index P>, one has to account for the fact that the projection has an
effect on the orientation of simplices. Lw€ be a simplex around an equilibriuvw
contained in/®, wherev” is a facet oP> — X, Then the sign in (1.7) for the vertices
ostA, ordered by their labels, is the opposite as the sign in (1.7) for the vertices of the

projected simplex.

To see this, note that the expression (1.7) for vertices of a simple@;&on XA
is the same as (1.8) for vertices of the simplex relative to the projection pgint
(—mv,...,—mv). This is due to the fact that both point8 € R™ and
Vp = (—M¥,...,—mV) lie in the same of the two halfspaces which are defined by the
hyperplane containing the simplex. Furthermore, the expression (1.8) for a simplex
w5 relative tov, is not affected by the projection @fs* onX%. For the simplexX2,
the expression (1.7) for the ordered vertice$(6f is the negative as that in (1.8) rel-
ative tovp . Both0 € R™ andvy, lie in different halfspaces defined by the hyperplane
containingX”. So if a simplestA in X has the same orientation X$', it means

that the corresponding simplexﬂf has the opposite orientation ¥$".

This is depicted in Figure 2.12. One the left, one looks at the surfaBé dfom
the projection pointp throughX%, wherevp, lies on the outside dP”. On the right,
one looks at the surface &> from 0 € R™, which lies the inside oP”. Moving
from vp, to 0 € R™ changes the orientation &, but not the orientation of the other

simplices.

Hence, inP" the index of an equilibriumvs is +1 if w5 has the opposite orienta-
tion asX®, and it has index-1 otherwise. This means that the artificial equilibrium
itself has, by definition, index1. So let, as beforey,, ..., wn be the set of vertices
of WSA described by their coordinates with respect to the verticeg“ofwherev®
is a facet ofP>. Let the vertices of” be given as/,...,Vn, described as column

vectors with respect to the unit vectors as basis.viget. ., wj,, denote the set of ver-
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Figure 2.12: The index i

tices ofwsA described by their coordinates with respect to the unit vectors as basis. So

W' = [V1,...,Vm|Wi. Then the index is given by
sign(—1)™ 1defwy,...,wH] = sign(—1)™ *defvy, ..., v [Wi,...,Wm].  (2.13)

So the index as in (2.13) for the constructiBff is the negative of the expression
(2.12) for the constructioX". This accounts for the effect of the projection on the

orientation.

Proposition 2.10 The index as in Definition 2.9 is the same as the index in Defini-
tion 1.4,

Proof. Without loss of generality, it can be assumed that the entries of the payoff
matricesA andB are strictly greater than zero. Consider the labelled suiPcel et

(v,w) be an equilibrium, and |em§ be the corresponding completely labelled simplex
contained in the facet” of P2. The simplex/” is spanned by some vectoss. . . , Vi,

which are described as column vectors with respect to the unit vectors as a basis. These

vectors are some vertices of the polar polytope” as in (2.3).

If vi represents a strategyof player Il, thenv; = AjBj, whereAj = % is a
|
positive scalar (compare (2.2)).\f represents an unplayed strate@f player I, then

Vi = —nVg. Sov; = —Ajg, whereAj = v is a positive scalar.

Letws,...,Wn denote the ordered set of verticeswﬁ, given by their coordinates
with respect to the vertices of*. These vectors are, by construction, such &{aw;
has the maximum entrg},,., in row i, and is the same constait< cl,, in all other

rows. LetC denote the matriA(v)[ws ... wm|. ThendetC has positive sign, since any
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convex combination of with the identity matrix has full rank. Note that all entries of

C are strictly greater than zero, since all entried\@ire strictly greater than zero.

One obtaingw, ..., W] = A(v)~1C. With respect to the unit vectors, the vertices
of ws' are given by the vectorgw, ..., we] = Blwy, ..., W), whereB = [v1, ..., Vi.
The rows ofB can be ordered such that if rojaof B represents an unplayed strategy,
thenB;j = —\;eg;. If the rows ofB are ordered in this way, then ttjeh column ofA(v)

is given byA(v); = ;.

Let k denote the size of the support faw), and letA’ andB’ be defined as in

(1.10). For the expression in (2.13), this gives
sign(—1)™* det[wf...wh] = sign(—1)™* det [BA(v)"C]
= sign(—1)¥! detB’ detA'. (2.14)

Note thatsign detA(v)~! = sign detA(v) = sign detA’, sinceA(v); = g; if col-
umn j represents an unplayed strategy. One alscslgasdetC = +1. Furthermore,
sign detB = (—1)™ Ksign detB'. This is due to the fact that the rows Bfare ordered
such that if rowj of B represents an unplayed strategy, tBgr= —Ajej with Aj > 0.
All other rows of B are positive multiples of columns d&. Thus the expression in

(2.13) is the same as the expression in Definition (1.4). ]

The expression in (2.14) can be interpreted as follows. The terb** accounts
for the alternating sign of the matrix correspondingkto, sign detB’ gives the orien-

tation ofv, andsign detA’ gives the orientation ofs* within v2.

In X=, the artificial equilibrium is not represented as such. Instead, it can be
thought of lying undeix’, since it is covered by the projection Bf — X2, Al-
ternatively, the artificial equilibrium can be representeﬁtﬁn by attaching a mirrored
version ofX” along somém— 2)-face toX” as depicted in Figure 2.13. The represen-
tation of the index iX” allows to intuitively show that indices which are connected

via a L-H path have opposite indices. This result was first proven by Shapley (1974).

Proposition 2.11 Equilibria connected by an L-H path have opposite indices. The

sum of indices of equilibria in a non-degenerate bimatrix gamels

Proof. The proof is illustrated in Figure 2.13. Note that the dual construction can also

be applied to player II's strategy spacteo obtainY/ to follow L-H paths defined by a
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missing labelj € J. The proof here applies m? and L-H paths defined by a missing

labelk € | of player I. The proof for L-H paths " is equivalent.

Take two equilibria(vi,wp) and (vo,wp) that are connected iX x Y via an L-
H path inM(k) for somek € I. In X2, this corresponds to two completely labelled
pointsws; andws, that are completely labelled and are connect@dﬁrby some path
in M*A(k). Along the path, the relative position of the regions with labels{k} is
constant. Fixing the face with labdls- {k}, the vertex with labek lies on one side in
vv?l, and on the other side WSAZ SOWSAl andwﬁ2 must have opposite indices (see e.g.
Eaves and Scarf (1976) or Garcia and Zangwill (1981, Theorem 3.4.1)).

Figure 2.13: Orientation along L-H paths

As argued above, the artificial equilibrium has orientatieh Since for a given
missing label the L-H paths always yield equilibrium pairs (including the artificial
equilibrium), the sum of indices of equilibria equé$f one also counts the artificial

equilibrium, and it equals-1 if one does not. ]

Proposition 2.10 shows that the index is independent of unplayed strategies. This
is also illustrated by the dual construction, since the permutation of the labels repre-
senting unplayed strategies is trivial. The following observation shows that this invari-
ance property, together with the fact that the sum of indices of equilibria of a game

equals+1, actually defines the index.

Proposition 2.12 Let Ind(v,w) be some index function that assigns an indexor

—1to equilibria (v,w) of a non-degenerate bimatrix gamelnf(v,w) is such that the
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indices of equilibria of a game add up tel and such that the index does not depend

on unplayed strategies, thénd(v,w) must be the same as in Definition 1.4.

The proof is by induction on the numbleof strategies played in equilibrium. The case
k = 1 reflects pure strategy equilibria, for which both concepts yield ind&x Now

fix a non-degenerate bimatrix gar@eand consider an equilibrium & in which each
player playsk strategies. Consider the garke k bimatrix gameG’ that is obtained
from the original gameés by deleting all unplayed strategies, i.e. consider the game
with payoff matricesA’ andB’. Then the equilibrium is the only completely mixed
equilibrium inG'. The sum of indices of the equilibria & equals+1 with respect

to bothInd(-) and Definition 1.4. But for all equilibria o0&’ that usek — 1 or less
strategies, both indices are the same, noting that both concepts only depend on the
strategies played in equilibrium. The sum of indices of the equilibri@ afquals+1,

thus the indices of the completely mixed equilibrium@fmust coincide. These, in

turn, are the same as the indices of the equilibrium as an equilibriun of ]

In the same way as in the proof of Proposition 2.12, one can show that the invari-
ance property, i.e. the index does not depend on unplayed strategies, and the property
that equilibria at the ends of L-H paths have opposite indices completely characterise

the index.
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Chapter 3

Sperner’s Lemma and Labelling

Theorems

This chapter shows how the labelled dual construckprrelates to labelled triangula-
tions as in Sperner's Lemma. Sperner’'s Lemma is a result from combinatorial topology
that applies to triangulations of the unit simplex together with a labelling of the vertices
in the triangulation. Sperner’s Lemma states the existence of a fully labelled simplex if
a certain boundary condition is satisfied. This condition is a restriction on the labelling

function for vertices on the boundary.

Sperner's Lemma is equivalent to Brouwer’s fixed point theorem (see e.g. Garcia
and Zangwill (1981)). Since the Nash equilibria of a game can be described as the fixed
points of a suitable mapping: X xY — X x Y, a “connection” between Sperner’s
Lemma and bimatrix games is nothing new. What is new, however, is the fact that the
dual construction fom x n bimatrix games relates to Sperner's Lemma in dimension
m— 1. This also allows one to show that the existence of a Nash equilibrium in an non-
degeneraten x n bimatrix game implies Brouwer’s fixed point theorem in dimension
m— 1. Since Nash equilibria can, conversely, be described as fixed points, Brouwer’s
fixed point theorem is equivalent to the existence of Nash equilibria in non-degenerate

bimatrix games.

The structure of this chapter is as follows. Section 3.1 reviews Sperner’'s Lemma in
its classical form. It shown that Sperner’s Lemma is equivalent to the KKM Lemma,

a classical result by Knaster, Kuratowski and Mazurkiewicz (1929), and to Brouwer’s
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fixed point theorem. In Section 3.2 it is shown how these results apply to bimatrix
games. In particular, it is shown that for every labelled regular triangulafgh? |

with no vertices on the boundary other than the unit veaorgth labeli, there exists
anmx n non-degenerate bimatrix game such that the labelled dual construction for the
game is equivalent to the labelled triangulation (Proposition 3.9). The L-H algorithm
in that bimatrix game is equivalent to a well-known algorithm that finds completely
labelled simplices. It is also shown that for every labelled dual construxtivthere

exists a refinement ¢K”| and a labelling of the vertices that is consistent with the best
reply regions such that the Nash equilibria are represented by the completely labelled
simplices (Proposition 3.14). The relation of the dual construction to Sperner’'s Lemma
is then used to show that the existence of Nash equilibria in non-degenerate bimatrix
games is equivalent to Brouwer’s fixed point theorem (Corollary 3.13). Section 3.3
translates the division ok” into a mapping that characterises the Nash equilibria.

This section is important, as it lies the technical foundation of the subsequent chapters.

3.1 Sperner's Lemma

Sperner's Lemma (Sperner (1928)) applies to triangulations of a simplex with labelled
vertices. Sperner’s lemma states that there exists an odd number of completely labelled
simplices in a labelled triangulation of the standérd- 1)-simplex A™1 if a bound-

ary condition is fulfilled. This boundary condition states that the label of a vertex

on the boundary is one of the labels of the vertices that span the face that cantains
Sperner's Lemma is a classical result from combinatorial topology and is equivalent
to Brouwer's fixed point theorem and the KKM Lemma (see e.g. Garcia and Zangwill
(1981)).

A triangulation (or simplicial subdivisiophof A™ 1, denoted asA™ 1|, is a finite
collection of smallefm— 1)-simplices whose union is the simplex, and that is such
that any two of the simplices intersect in a face common to both, or the intersection is
empty. Letv denote the set of vertices of the smaller simplicels’i"~1|. A labelling
function is a function that assigns a labbel | = {1,...,m} to each vertex €V, i.e.

L: V — 1. An example of a triangulation dfA™! | with a labellingL is depicted
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in Figure 3.1. A triangulation together with a labelling of the vertices is referred to as

labelled triangulation

Figure 3.1: A labelled triangulation

The simplexA™ 1 is spanned by the unit vectagse R™, i € |, wherel = {1,...,m}.
The Sperner boundary condition, which is referred to asSiperner conditionstates
that if a vertexv € V lies on the(k — 1)-face of A™1 that is spanned bgj, j € I,
with Iy = {i1,...,ik} C I, thenL(v) € I. Note that the Sperner condition only restricts
the labelling of vertices that lie on the boundahy € | andlx # 1). For vertices in
the interior of A™~1 there is no restrictionl{ = 1). So it is appropriate to refer to the
Sperner condition as a boundary condition. The Sperner condition implies that the unit
vectorsg have label. So every vertex can only be assigned one of the labels of those
vertices that span the (minimal) face that containsSor the example in Figure 3.1, the
Sperner condition is fulfilled. For example, the vertices that lie on the boundary face

spanned by vertices with labelsand2 only have labeld or 2.

Definition 3.1 (Sperner condition) Letv € V be contained in gk — 1)-face of AM1
spanned by, j € I, with Iy = {i1,...,ix} C I, and letk be minimal in this respect.

Then a labellind-: V — | fulfils the Sperner condition f(v) € I.

Sperner's Lemma states that there exists an odd number of completely labelled sim-
plices if the Sperner condition is satisfied. A simplex is called completely labelled if
the vertices of the simplex have distinct labels, i.e. if the vertices have labelsm.

It follows that there exists at least one completely labelled simplex. Sperner’'s Lemma
also states that there exists one more completely labelled simplex with positive orienta-
tion than with negative orientation. An orientation is an equivalence class as described

through (1.7). According to (1.7), the sign of the determinant associated with the unit
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simplex A™-1 with vertices labelled (g) =i is +1. If a simplex is completely la-
belled, one can order the vertices according to their labelling. Applying (1.7) and
choosing the orientation of the unit simplex as the standard orientation, one can define

the orientation of a completely labelled simplex.

Definition 3.2 (Orientation) A completely labelled simplex has orientatie, if it
falls in the same equivalence class as the unit simpl&k ! with vertices labelled

L(e) =i, and—1 otherwise.

The labels of a completely labelled simplex can be seen as an ordering of its vertices,
and the orientation of a fully labelled simplex corresponds to a permutation of the
labels of the vertices as described before. The orientatiei i the permutation has
sign+1, and it is—1 otherwise. For the example in Figure 3.1, the completely labelled
simplex in the bottom right corner has orientatiod; the labelling read$1,2,3) in
anti-clockwise direction. The completely labelled simplex in the centre of Figure 3.1

has orientation-1; its labelling read$1, 2, 3) in clockwise direction.

Theorem 3.3 (Sperner’s Lemma)Consider a labelled triangulation A™1 | such
that the labelling satisfies the Sperner condition. Then there exists an odd number of

completely labelled simplices, one more with orientatidhthan with orientation—1.

Proof. This proof employs methods from combinatorial topology and is by induction
(see e.g. Henle (1994, p. 38) for the case- 3). The case fom= 1 s trivial, and

m= 2 is also easy to verify. So suppose the claim is true for triangulations™f.

Fix a labelk € 1, and consider a simplex € | A™ 1| that is spanned by vertices
V1,...,Vm. Consider aim— 2)-face of A that is spanned by, say, vertiogs. .., Vm_1.
Relative toA\, each(m— 2)-face has an orientation induced by the orientation8f*
and the label$ — {k}: If the m— 1 vertices of the face do not have labels {k}, the
orientation is 0. If the vertices of the face hawe- 1 distinct labeld — {k}, then the
orientation of the(m — 2)-face is the orientation of the completely labelled simplex
that would be obtained by giving, the missing labek. This is depicted in Figure 3.2

for k= 1. There are three cases.
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1) A simplexA does not have labels— {k}. In this case the orientations of its
(m— 2)-faces are zero since rim— 2)-face can have labels- {k}. Hence the

sum of the orientations over thjen— 2)-faces ofA is zero.

2) A simplex A has exactly than— 1 distinct labelsl — {k}. Then exactly two
(m—2)-faces ofA are such that they have the same 1 distinct labeld — {k},
while all other(m— 2)-faces have labels other thar {k}. The latter ones have
by definition orientation zero, while the two former ones are such that they have
opposite orientations. Hence the sum of orientations ovefrthe 2)-faces of

A\ is also zero.

3) AsimplexA is completely labelled. Then, by definition, their exists exactly one
(m—2)-face of A with labelsl — {k}. This face has orientation1 if A has

positive orientation, and orientatienl if A has negative orientation.

Now consider afim— 2)-face that lies in the interior oh™-1. By definition, it belongs

to exactly two simplices that are adjacent. With respect to one simplex its orientation
is the negative of its orientation with respect to the other simplex (including the case
where the orientation is zero). So, adding up the orientations d¢frell 2)-faces of

all simplices in| A™1|, this sum must equal the sum of orientations of the boundary
(m— 2)-faces ofl A™1|, since the orientations ¢ — 2)-faces in the interior cancel

out.

Boundary(m— 2)-faces off A™ | with labelsl — {k} can only lie on thém— 2)-
face spanned bg, i € | — {k}. But the sum of orientations of theéa— 2)-simplices
equals+1 by induction assumption. Hence, there exists exactly one more completely
labelled simplex with positive orientation than with negative orientation. Note that the

proof is independent of the lablelchosen for the proof. O

An illustration of the proof in the casm = 3 is depicted in Figure 3.2 for the

example in Figure 3.1. Consider a trianglec | A?|, and fix the labek = 1. The

assigned orientation is1 if the edge has label® 3 oriented in the same way as the
edge2, 3 in the original simplex, and-1 if it has labels2, 3 oriented in the opposite
way. All other edges have orientati@ Now consider two triangleg\ and A’ that

share an edge. Then the edge in one triangle has the opposite orientation as the same
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Figure 3.2: The proof of Sperner’'s Lemma f&f

edge in the adjacent simplex. The sum of orientations of the edges of a triangle is
either+1, —1 (if completely labelled) o0 (if not completely labelled). But adding

up the sums of orientations of edges over all trianglgs/iR | is the same as the sum

of orientations of edges on the boundary| #f? |, since the orientations of edges in
the interior of| A?| cancel out. The Sperner condition ensures that this outer sum is
+1. Boundary edges with labefs3 can only lie on thgm— 2)-face of A? spanned

by & andes. On thisl-face, the orientations add uptal. Hence, there exists an odd
number of completely labelled simplices, one more with positive orientation than with

negative orientation. In Figure 3.2 these are depicted by bold edges.

So the Sperner condition, which is a restriction of the labelling on the boundary,
determines the existence of a completely labelled simplex. An alternative proof of
Theorem 3.3 can be given by using degree theory from algebraic topology, described
next. This proves useful when comparing the Sperner situation with the labelled dual
constructiorD(*A and when formalising a generalised version of Sperner’'s Lemma that
applies to components of equilibria in Chapter 5. For this, one translates the labelled
triangulation into a mapping between two stand@rd- 1)-simplices. The mapping
also yields a division oA™ 1 into labelled regions such that one can apply the KKM

Lemma (see below).

Definition 3.4 Consider the standartm— 1)-simplexA™ 1. ThenA™ 1 is the (non-
disjoint) union ofm convex regiong\™(i) with labelsi € | as follows: A™ (i) =

{xe A™ 1| x = maxe x¢}. This division ofA™ ! into convex regions is referred to
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as the canonical division and is denoteda% 1. Each pointinp e A™1is assigned
the labels of the regions that contami.e.L(p) = {i €| | pc A™(i)}. The vertices
of A™1 are the vertices of the sets™1(i), i € I. The completely labelled point in

the centre ofA™ 1 is denoted as,.

Essentially, the division oA™ 1 into labelled regions is same as the divisionXof
A™ 1 into best reply regions in then x m coordination game with identity matrices
as payoffs, and the vertices Af"* are the vertices iX = A™1. A depiction of the

canonical division is given in Figure 3.3.

Figure 3.3: The canonical division™ 1

The labelling now defines a mappirig from | A™1| to A™. Consider a simplex
A € | A™ 1] that is spanned by vertices, . .., vm. Each vertex has a labe(v), and is
mapped to the vertex () in A™ 1 This mapping preserves the labels of the vertices,
i.e. L(v) = L(fS(v)). Having defined the mapping on the vertices/of it can be
linearly extended to a mapping frofh by mapping a convex combination of vertices

on the convex combination of their images, £&€(SM Aivi) = M, A fS(w).

Itis easy to verify thaf > maps everk-face of a simplex inA™1| on somek-face
of A™1, In particular, if thek+ 1 vertices of e&-face have distinct labels, . . . ,ix.1,
itis mapped affinely on thieface of A™* that is spanned by unit VECIOES, ..., 6 ;-
If the k+ 1 vertices of that face have labals...,i; (with | <k+1, so some labels
might be duplicate), it is mapped on thle- 1)-face of AT that is spanned by unit
vectorse,,...,&,. Since this also holds for then— 2)-faces that lie on the boundary

of | A™1|, the mappingfS maps boundary on boundary, i.e.

f: (|A™ 0 A™ ) — (AP oAT ). (3.1)

The mapping in (3.1) is referred to as tBperner mappingand induces a division
of | A™1| into labelled regions A™1|(i). This is depicted in Figure 3.4. These
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regions are the pre-images of the regiah® (i) in the canonical divisiom\™1,

This division of A™ 1 into labelled regions is denoted &&™*|,. The subscript

“*” symbolizes a division into labelled regions (as in the cae{é). The labels of a
point p € | A™1|, are defined a&(p) = L(f(p)). The bold numbers and lines in
Figure 3.4 mark the regio\™1|(i). In this representation, the completely labelled
points correspond to completely labelled simplices, since only the centre of completely

labelled simplices is mapped .

Figure 3.4: A division ofA™ 1 into labelled regions

Alternatively, letvy,...,vy be the vertices of some simplek in | A™1| with
labelsL(v;), fori € 1. A point in A is given by its coordinatep with respect to
Vi,...,Vm. Then, on eack\, the mappingfS can be described by the matde(A) =
[€L(vy)---EL(vy)] - This matrix is referred to as thperner matrix So a point inA
with coordinateg is mapped tAS(A)p. The labels of a point with coordinatgsare
given byL(p) = {ke | | (AS(A)p)x = maxc| (AS(A)p)i}. So the division into labelled
regions is obtained in a similar way as the labelled dual construction is obtained via
A(v). The difference is that in the Sperner case the columns of the n#gifix) are
unit vectors, whereas in caseAv) the matrix consists of a mixture of payoff vectors

and unit vectors.

The Sperner condition determines the degree of the Sperner mappinghe
concept of degree is a useful tool that incorporates what was done “manually” in the
proof of Theorem 3.3. For the mappirfg, the degree counts the number of pre-
images of the completely labelled pointe A™ 1, where each pre-image is counted
with its local degree. The local degree at a pre-image efjuals the orientation of the

completely labelled simplex that contains the pre-image. For a mapping that permutes

71



the vertices of a simplex, the degree equals the sign of the permutation. In Figure 3.4,

this is depicted by the oriented arc around completely labelled points.

Furthermore, the degree of a mapping is the same as the degree of the mapping re-
stricted to the boundary. The degreefsfrestricted to the boundary @™ counts,
for an arbitrary but fixed labét € I, the number of almost completely labelled points
on the boundary A™-1 |, with labelsl — {k}, again counting each with its local de-
gree. The local degree 6P restricted to the boundary equals the orientation that was
assigned tgm— 2)-faces in the proof of Theorem 3.3. In particular, it is independent

of the labelk chosen.

The two paragraphs above contain all that is needed in terms of degree theory for
the remainder of this work. A detailed account of the degree can e.g. be found in Dold
(2972, 1V, 4 and 5).

Lemma 3.5 If the Sperner condition is satisfied then the degree of the Sperner map-

ping fSis +1.

Proof. The proof is by induction. Fom = 1 the case is trivial (and fom= 2 it is

also easy to check). So suppose the statement is true for triangulations of the standard
(m—2)-simplex. Fix a labek € 1. In the division of A1 into labelled regions
consider the vertex with labels| — {k} that lies on the(m— 2)-face spanned by

unit vectorse, i € | — {k}. Now restrict f> to the boundary. FoffS restricted to

the boundary, the pre-images wican only lie on the(m — 2)-face of| A™1| that

is spanned byg, i € | — {k} (see also Figure 3.4). This is ensured by the Sperner
condition. But then the degree &P restricted to the boundary is1 by induction

assumption, which equals the degree ®f O

After translating the labelling into a mapping, Sperner’s Lemma is simply a conse-
quence of Lemma 3.5. The degreeféfequals+1. This degree is, as explained above,
the sum of local degrees at pre-images/of But the local degree at a pre-image of
V, is the same as the orientation of the completely labelled simplex that contains the

pre-image.

The induced divisio A™ 1|, is a division to which one can apply the KKM

Lemma, a classical result by Knaster, Kuratowski and Mazurkiewicz (1929).
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Theorem 3.6 (KKM Lemma) LetC;, withi el ={1,...,m}, be a collection of closed
subsets of\™-1 such that for all subsetg c | the face ofA™ ! that is spanned bg,
fori € ly, is contained i Ji¢, Ci. ThenN;g, Ci # 0.

Proof. The KKM Lemma is implied by Sperner's Lemma. To see this assume that
Nic1Ci = 0. Now each subset; is closed by assumption, and since it is bounded,
it is compact. So the sdijcC; is compact, and the mappingic,Ci — R defined

by (x1,...,%) — max j||x — X;|| takes @ minimung > 0. Therefore there exists an

g > 0 such that for alix € A™! the e-neighbourhoodJs(x) aroundx is such that
Ueg(X) NCi = O for at least one sef;. Now choose a triangulation at™ 1 such that
each simplex in the triangulation has a diameter smaller ¢hdrabel the verticey

such thatL(v) € {i | v Ci}. Then one has a triangulation af™1! that fulfils the
Sperner condition but does not contain a completely labelled simplex. This violates

Sperner’s Lemma. O

Conversely, it is easy to see that the KKM Lemma implies Sperner’s Lemma. As-
suming a triangulation o™~ that fulfils the Sperner condition but does not contain a
completely labelled simplex, one obtains a division'df 1 via the Sperner mapping
fS that satisfies the assumptions of the KKM Lemma but does not contain a completely
labelled point. Thus Sperner’'s Lemma is equivalent to the KKM Lemma (see also e.g.
Garcia and Zangwill (1981)).

There exists a well-known algorithm that finds a completely labelled simplex in
| A™1| (or a completely labelled point inA™-1|,). This algorithm is described be-
low, and is referred to as ti&perner algorithmFirst, “extend”| A™1| by inscribing
itinto a larger(m— 1)-simplex| A™-1|® as shown in Figure 3.5 (see e.g. Scarf (1983)).
This gives a triangulation of the extended simplex that coincides with the triangulation
| A™1|in the interior. Now label the vertices that spaf™ | such that there are
no completely labelled simplices except from thosgAd™ 1 |. This is possible due to
the Sperner condition: Take the outer vertex of the extended structure that lies on the
outside of the face of A™~* | on which the vertices can only have labels| — {k}.
Labelling the outer vertex witk+ 1 (modm) ensures that no new completely labelled
simplices are created. Furthermore, it ensures that, for every set oflabghg, there

exists exactly oném— 2)-face on the boundary ¢#A™-1|® that has labels— {k}.
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Figure 3.5: An algorithm for finding completely labelled triangles

The algorithm can now be described as follows (see Figure 3.5). Start from the
outside of the extended construction (or at a completely labelled simplex once one has
been found). Choose a lablet | and flip over thdm— 2)-face that has labels- {k}.

If the new simplex is not completely labelled, it must have exactly one dther2)-

face (other than the face one flipped over) with the same labelk}. Then flip over

this (m— 2)-face into an adjacent simplex, and so on. Eventually, this algorithm yields
a completely labelled simplex inA\™1| (see e.g. Scarf (1983)). Simplices that are

connected through the algorithm have opposite orientation.

The Sperner algorithm translates easily into the topological settingf L.eénote
the Sperner mapping from the enlarged simplex™1|® to A™1. This yields a
division of the extended simplex into labelled regions in which the completely labelled
simplices correspond to points that are mapped tanderfS. For every labek, there
exists exactly one point on the boundary with lablels{k}. The path with labels

| — {k} that starts on the boundary leads to a completely labelled point.

To emphasise the relevance of Sperner’s Lemma in fixed point theory, this section
concludes by proving the familiar theorems that show that Sperner’s Lemma implies
Brouwer’s fixed point theorem and vice versa. This also allows one to show in the
next section that the existence of Nash equilibria in non-degenerate bimatrix games is

equivalent to Brouwer’s fixed point theorem.
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Figure 3.6: The Sperner algorithm as a path-following algorithm

Theorem 3.7 (Brouwer's fixed point theorem) Every mappingf : A™1 - Am-1

has a fixed point, i.ed x* € A™1: f(x*) = x*.

Proof. Assume the contrary, i.e. for alc A™ ! one hasf(x) # x. This defines a
mappingr : A™ 1 — aA™ ! that retractsA™ ! on its boundary. Define(x) as the
point on the boundary that is given by the intersection point between the line defined by
xandf (x) in direction ofx and the boundary (see the left picture in Figure 3.7). Since
r is continuous and defined on a compact set, the mappimgniformly continuous.
Now take a triangulation o™ 1 into sufficiently small simplices, say with diame-
ter smaller than somé& Then label the vertices accordinglt¢v) = L(r(v)), where
L(r(v)) is the label of the point(v) in the canonical division. Then one has a labelling
that satisfies the Sperner condition (simag the identity on the boundary) and is such
that no simplex is fully labelled i is sufficiently small: Every-neighbourhood ok

is mapped on some smaHneighbourhood of (x), which does not contain more than

m— 1 distinct labels for smak. This contradicts Sperner’s Lemma. O

Brouwer’s fixed point theorem depends on the fact th&t ! cannot be retracted
to its boundary. If there exists a subdivisipa™ 1 | with a labelling that satisfies the
Sperner condition and does not contain a completely labelled simplex then the Sperner
mappingf S is a mapping that retracts™ 1! to its boundary. Assuming without loss of
generality there are no vertices except thosé\8f ! on the boundary (by inscribing

| A™1| into an extended structure as above), the mappihés the identity on the
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boundary. Thus the “no-retraction” property implies Sperner’'s Lemma. But Sperner’s

Lemma can also be deduced directly from Brouwer’s fixed point theorem.

Figure 3.7: Sperner’s Lemma implies Brouwer and vice versa

r(x) %)

Proposition 3.8 Brouwer’s fixed point theorem implies Sperner’'s Lemma and Sperner’s

Lemma implies Brouwer’s fixed point theorem.

Proof. The latter implication was shown in the proof of Theorem 3.7. So it remains to
show that Brouwer’s fixed point theorem implies Sperner’s Lemma. Suppose one has
a labelling that satisfies the Sperner condition and that does not contain a fully labelled
simplex. Then the Sperner mappifgis such thatf S(x) # v, for all x e A™1, Then
defineg(x) as the point on the boundary that is defined as the intersection of the line
betweenfS(x) andv, in direction ofv, with the boundary (see the right picture in
Figure 3.7). Themy(x) is a mapping for whicly(x) # x for x in the interior of A™1,

Now suppose lies on somé-face of A™1. By construction of the Sperner mapping,

the pointfS(x) lies on thatk-face, and the line connectinig®(x) andv, does not go
elsewhere through this face. §() # x for all points on the boundary, and henge

has no fixed points. This contradicts Brouwer’s fixed point theorem. O

3.2 The Application to Bimatrix Games

The division| A™ 1|, into labelled regions induced by the labelled triangulation al-
ready shows strong similarities with the labelled dual construcion The division

of | A™1|, is induced by the Sperner matd¥(/\) as described on page 71, whereas
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the division ofX/" is induced by the artificial payoff matri&(v). The difference, how-
ever, is thatAS(A) only consists of unit vectors, whereA$v) consists of a mixture
of unit vectors representing unplayed strategies and columAsrepresenting pure
strategies of player Il. So the division of a simplex|¥¢*| into best reply regions is
in general more complex than the division of simplice$Aa™1|. Furthermore, the
triangulation| X% | is regular as it arises from the projection of a simplicial polytope.

The triangulation in the Sperner case can be any triangulation.

Despite the differences, there are still striking similarities betwiegf—*|, and
X2, and this section shows how and under what circumstances one can translate
one situation into the other and vice versa. The equivalence of Brouwer’s fixed point
theorem and the existence of Nash equilibria in non-degenerate bimatrix games (Corol-

lary 3.13 below) also shows that these differences are not very deep.

Proposition 3.9 Let| A™ 1| be a labelled triangulation of the unit simplex with no

vertices on the boundary other thanfori € I. Let the Sperner condition be satisfied,

soL(g) =i. If the triangulation ofA™ 1 is regular, then there exists a non-degenerate
mx n bimatrix game such thatA™ 1| = [X2| and | A™ 1|, = X (after identifying

X2 with AM-1y.

Proof. Let| A™ | be aregular triangulation. Consider the simpkxthat is spanned
by the vertices—mVg, for i € | and some positive constafit Then A™* can be

identified withX2 via a linear mapping defined l&/— —mvq. This mapping induces
a regular triangulatiofiX®| of X, The label of a vertex € |X*| is defined by the

label of its pre-images.

This yields a labelled and regular triangulation)ot. Since the triangulation is
regular, the triangulation is the projection of some simplicial polytBpeas in 2.3,
with the firstm vertices ofP” given by —mVq, i € |. The vertices oP” satisfy the
conditions in Lemma 2.2 since the triangulation is regular. Also, it can be assumed that
0 € R™M lies in the interior ofP2. If not, one could just move the vertices except for
—mve, i € 1, along the projection lines to obtain a combinatorially equivalent polytope
that contain® € R™. As described in Lemma 2.2, this yields the columns of a payoff

matrix B such that the best reply polytopethat arises fronB is the polar ofP”. This
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determines the payoffs for player Il. Note that if there aneertices in the interior of

| A™=1], then the resulting game is of dimensiorx n.

Finally, one has to determine the payoff mat@iXor player I. These payoffs are
determined by the labelling of the vertices. Each vestex|X”| represents a pure
strategy of player Il. If the label of a vertexiigor somei € I, then define the payoff
for player | with respect to the pure strategy that is represented by wedsg, the
unit vector with entry in rowi. Then the induced polyhedral division into best reply
regions of the simplices ifX*| is the same as the division induced by the labelling
of the vertices i A™1|. The payoff matrixB that inducegX”| is generic. So is
the payoff matrixA that only consists of unit vectors and induces the division into best

reply regions. L]

Corollary 3.10 For a missing labek € | of player I, the L-H algorithm for the game
constructed in Proposition 3.9 follows the same path of simplices as the Sperner algo-

rithm.

Proof. This is an immediate consequence from the construction. The L-H algorithm
follows the path of almost completely labelled points in the labelled dual construction.
This corresponds to flipping ovém— 2)-faces in the triangulation which have— 1
distinct labels. The labelled dual construction is identical with the divisionBf

that is induced by the Sperner mappifigy But the Sperner algorithm also flips over
those(m— 2)-faces in the triangulation that hame- 1 distinct labels. Hence the paths

of both algorithms are identical. O

Proposition 3.9 is used to conclude Brouwer’s fixed point theorem from the exis-
tence of Nash equilibria in bimatrix games. The idea of the proof is based on translat-
ing a division| A™-1 |, that arises from a Sperner labelling into a diviskn with a

triangulation|X| that is regular and arises from a payoff maix

For this, consider some triangulation &1, Then add a vertex. Suppose this
vertex is contained in some simpléxthat is spanned by vertices, ... vy Note that
it is allowed forv to lie on somek-face of A. Then consider the refinement Af that
is given by the simplices spanned by

{v,vo,....Vm}; {V1,V,V3,....Vm}; -5 {V1,...,Vm-1,V}. (3.2)
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If vlies on thek-face of two or more simplices, the refinement in (3.2) applies to each
simplex that contains. An illustration for this is given on the left in Figure 3.8. First
the vertexv is added, then the vertex, and finally the vertex’’. Note that some of
the simplices in (3.2) are not full-dimensional in cadees on some-face of A with

k < (m—2). In this case, they become faces of simplices in the triangulation.

A refinement of a given triangulation that is achieved by iteratively adding vertices
at a time to the triangulation is referred to asitamated refinementThe following
lemma shows an iterated refinement can divide a simplex into arbitrarily small sim-
plices. Themeshof a triangulation is defined as the maximum diameter of a simplex

in the triangulation.

Lemma 3.11 For everye > O there exists an iterated refinementsf* such that the

mesh size of the triangulation is smaller than

Proof. It is shown that the barycentric subdivision is an iterated refinement. The
barycentric subdivision is known to produce simplices of arbitrarily small maximal

diameter (see e.g. Dold (1972, 1ll, 6)).

A depiction of the barycentric subdivision is given on the right in Figure 3.8. Take
a simplex in the triangulation. Then add the barycentre of(the- 1)-simplex as a
vertex. Next, add the barycentres of {t8 — 2)-faces as vertices, and continue with
the lower dimensional faces and their barycentres. Note that if one adds a vertex to a
k-face that is common to more than one simplex in the triangulation, then the vertex
is the barycentre of th&tface, i.e. the added vertex is the same for all simplices that

contain thek-face. This procedure yields the barycentric subdivision. ]

Figure 3.8: An iterated refinement of a simplex and the barycentric subdivision

Lemma 3.12 Let|X”| be a regular triangulation oK* with no vertices on the bound-

ary other than those that spax’>. Then every iterated refinement || that does
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not add vertices to the boundary ¥f* is a regular triangulation. In particular, if
X% | arises from a payoff matriB, then the refinement arises from an extended payoff

matrix that consists of the original columns®find additional columns.

Proof. Itis required that the added vertices do not lie on the boundaXy‘afo that the
resulting triangulation can still be achieved as the dual construction for some bimatrix

game.

So let|X”| be a regular triangulation. Then consider the polytBpethat yields
X% via projection. Now take a pointin the interior off X~ |. This point is represented
by some point” on the boundary of the polytoge”. Now take a point on the line
defined byv andV® that lies outside oP” but is still closeP”. This is depicted in

Figure 3.9. Let this point be denoted by

Figure 3.9: An iterated refinement €2 |

Let P2 be defined as the convex hull of points as described in (2.3). Now consider

the pontopePcA that is given by
P2 = conv{c,Cy,...,Cn} .

Thenc becomes a new vertex of the polytope. Then the vertefines the simplicial
structure ofP” in a way such that the projection B yields the iterated refinement
that is obtained by adding the powas a vertex. The vertexis the projection of the

vertexc.

For each added point, the pontoB@ satisfies the requirements of Lemma 2.2.
Hence, by Lemma 2.2, one can obtain a payoff matrix that induces the refinement. If

the original triangulation arises from a payoff matBxthe refinement corresponds to
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a payoff matrix which contains the original columnsB®énd that has an extra column

for each added vertex. [l

In Section 3.1 it was shown that Sperner’'s Lemma is equivalent to Brouwer’s fixed
point theorem. This section shows how to construct non-degenerate bimatrix games
from regular labelled triangulations such that the dual construction has the same prop-
erties as the labelled triangulation. Combining these results, one obtains the following

result.

Corollary 3.13 The existence of a Nash equilibrium in a non-degenenaten bi-
matrix game implies Brouwer’s fixed point theorem in dimensioAl. Since Nash
equilibria can, conversely, be described as fixed points, Brouwer’s fixed point theorem

is equivalent to the existence of Nash equilibria in non-degenerate bimatrix games.

Proof. Consider a mappin§: A™ 1 — A™1 Assumef (x) #xforallxe A™ 1. As

in the proof of Theorem 3.7, this yields a retractiathat is defined by the intersection
of the line betweerx and f(x) in direction ofx with the boundary ofA™ 1. The
mappingr then dividesA™ 1 into labelled regions by considering the pre-images of
the labelled regions od/A™ 1. In the proof of Theorem 3.7, this division is used to
create a labelled triangulation &f™* such that no simplex is completely labelled.
Here, it is shown that one can create a regular labelled triangulatidri"of with no
vertices added to the boundary &~ such that no simplex is completely labelled.
Using Proposition 3.9 one can then createraxin non-degenerate bimatrix game that

does not possess an equilibrium, leading to a contradiction.

Take the division ofA™1 into labelled regions induced by the retractionCon-
struct iteratively a triangulation of™1 such that its mesh is so small that no simplex
is completely labelled. As before, the label of a vertex is a label of a region that con-
tains the vertex. Note that the mesh of the triangulation can be constructed arbitrarily

small (see Lemma 3.11)

Letvy,...,vN be the set of vertices added to the triangulation, where the subscript
reflects the order in which the vertices are added. Aet {1,... N} denote the or-
dered subset for those vertices that were added to the boundar{df. Now take

the vertexvy, for A € A\, that is added last to the triangulation, and consider the iterated
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refinement that is obtained by adding the set of vert{ags...,vn} — {v\} in canon-

ical order. Continuing with the second-to-last vertex that was added to the boundary
of A™1 and so forth finally gives an iterated refinement with no vertices added to the
boundary ofA™1 that, by Lemma 3.12, is regular (see also Lemma 4.2 in the next

chapter).

It remains to show that the deletion of vertices on the boundary does not create
completely labelled simplices. Lgtbe a vertex that was added to the boundary. Then
v=yl_ WV with iy > 0 and1"p = 1, for somevs,...,v. Note that the retraction
is the identity on the boundary @gk™ 1. In particular, the labelling satisfidgv) =
L(v) for somei € {1,...,1}. So the face spanned Ry, ...,Vi_1,V,Vit1,...,%} has
the same labels as the face spannedWy...,Vi_1,Vi,Vit1,...,V}. S0 a simplex
spanned by{vi,...,Vi_1,V,Vi+1,...,Vk} and some{Vk,1,...,Vm} is fully labelled if
and only if the simplex spanned Hy1,...,Vi_1,Vi,Vit1,..., W%} and{Vki1,...,Vm} IS
fully labelled. Hencer can be removed without creating a completely labelled simplex

(see also Lemma 4.4 in the next chapter). O

McLennan and Tourky (2004) have recently shown how Kakutani’'s fixed point
theorem can be proven by game theoretic concepts. They create games whose Nash
equilibria yield approximate fixed points, where the existence of the Nash equilibria is
ensured by the Lemke-Howson algorithm. The authors argue that “the Lemke-Howson
algorithm embodies, in algebraic form, the fixed point principle itself, and not merely
the existence theorem for finite two person games” (p. 3—4). The analysis above sup-

ports this view.

This section concludes with an observation that shows how to translate the labelled
dual constructiorX’ into a labelled triangulation that satisfies the Sperner condition

such that it reflects the combinatorial properties(ﬁf.

Proposition 3.14 LetX" be the labelled dual construction for sortra x n)-bimatrix
game, and lefX” | denote the regular triangulation &¢”. Then there exists a labelled
refinement ofX*| such that a vertex in the refinement has labéland only if it is
contained in the region with labeland such that a simplex is completely labelled if

and only if it contains a completely labelled poim € X2,
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Proof. Take some simplex”. The polyhedral division is generally not such that one
can just label the vertices of* with the respective best reply labels without refining
v2. Consider for example the polyhedral subdivisions depicted in Figure 3.10. In the
first case, just labelling the vertices would yield a labelling such that the simplex is not
completely labelled, although it contains a fully labelled point. In the second case, one
would obtain a completely labelled simplex, although it does not contain a completely

labelled point. Therefore, refinement is necessary.

Figure 3.10: A refinement of®

1 1 3
2/3 2 1\ /2\/1\1/2

Now one can refine the mesh p€”|. This can, for example, be achieved by an

iterated refinement. If the refinement is sufficiently small, a simplex contains a fully

labelled point if and only if all its vertices lie in distinct best reply regions. Labelling

the vertices according to the best reply region yields the desired labelled refinement.
O

A possible refinement for the game in Example 2.3 is depicted in Figure 3.11. In
this case, itis sufficient to add a vertex to the edge between vertices representing strate-

gies4 and7. The resulting refinement fulfils the requirements of Proposition 3.14.

Figure 3.11: A labelled triangulation for the game in Example 2.3

.
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3.3 A Topological Interpretation of the Dual Construc-
tion

In the Sperner case above, a mappfigcharacterises the completely labelled sim-
plices in the sense that a simplex is completely labelled if and only if it contains a
point that is mapped to the completely labelled paint A™ . This mapping can

be described by the Sperner matAR(A) for each simplexA in the triangulation.

The aim of this section is to construct a similar mappfrifor X2 via the artificial
payoff matrixA(v). This mapping is used in extending the dual construction to outside
option equilibrium components and when giving a new characterisation of index +1

equilibria.

Take the payoff matrixA for player I. First the columng,; of A, for j € J, are
normalised as follows. Without loss of generality it can be assumed that all entries
of Aj are greater than zero. Otherwise one can add a positive constant to all payoffs
without affecting the best reply regions and hence the equilibria of the game. Let
IAj| = N, Ajj, i.e. |Aj| denotes the sum of entries in columy. By assumption
|Aj| # 0. Let Amax= maxcy|Aj|. Add the positive constanAfc%‘Aj| to columnj.
Adding a positive constant to a column of player I's payoff matrix also leaves the
equilibria and best reply regions invariant. In the modified payoff matrix, the entries in
each column add up t&nax Now divide all payoffs byAmax This, again, leaves the
Nash equilibria invariant. Hence one obtains an equivalent payoff matrix, also denoted

asA, in which all entries are positive and in which the column entries add yglto

Now consider a simplex” in |[X%|. Letws be a point inv®. The pointws can be
described by convex coordinates with respect to the vertices oBo for a pointws
in v~ that is given by its coordinates with respect to the verticene can simply

definefy(ws) = A(V)ws. Thenf,(w) € A™ 1 since

AW =T AW =3 T AViW =3 T AViwW =YW T AV =3 wj =1
] [ J I J

A depiction offy is given in Figure 3.12. It shows a simplex spanned by vertices
V1,V andvs and its image im\™ 1. The columns of\(v) are given byA;, A> andAg.
By construction, the column (i = 1,2, 3) are elements oA™ 1. So the image ofy,

is the subset of\™! that is spanned by the payoff vectadks A> andAz in A™ 1. In
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particular, the image is some simplex that lieg\f—? (this simplex is not necessarily
full dimensional, even for non-degenerate payoff vectors). The division*ahto
best reply regions is an affine transformation of the division of the simplex spanned by

A1,A> andAg, whose division is that induced by the divisionmﬂ‘*l.

Figure 3.12: The mapping,

If vi andv, share a common face, the mappirfgsand fy, are identical on that

face. Hence, by definin§ piecewise on each simplex® as f,, one obtains a mapping

fo(X2,0X2) — (AT oAt (3.3)

Note that the mapping on the boundaryXdt is given by the unit vectors as com-
ponents ofA(v), so f maps boundary on boundary. Furthermore, by construction, the
labels of a pointvs are the same as the labels of its image. The mappimy(3.3) is
referred to as thpayoff mappingsince the value of is the expected payoff of player |
under a strategy profiles of player Il (including the slack variables). A depiction of
the underlying geometry is given in Figure 3.13. It shows that the simplex marked in
dashed lines is mapped affinely on a simplex\ifi—1, also described by dashed lines.

The vertices of the simplex in™ ! are the images of the vertices|}*|.

This is a crucial difference to the Sperner case. There, the images of simplices are
either the simplexA™ 1 itself (if the simplex is completely labelled), or the images
are faces of\™1 (if the simplex is not completely labelled). In the dual construction,
the images of simpliceg” are simplices which are containedAd™ 1. Nevertheless,
the simplexv” contains a completely labelled point if and only if its image untler

contains the completely labelled point

Note thatX = A™ 1 So, so far,f is a mappingf : X© — X. To define the

index via a mapping, it is more convenient to have a map}&iﬁg—> X2, whereX® is
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Figure 3.13: The payoff mapping

divided into best reply regions asR{, i.e. via the unit matrix that assigns each vertex
—mvg of X2 the artificial payoffg. The simplicesA™ 1 andX* are homeomorphic
via the mappindd” that is described by the matrixm¢- Id, whereld is themx m
identity matrix. In particular, the labels of a pointc A™* are the same as the labels
of its imageld” (w). This is due to the fact that the vertex is™ ! with labeli is

mapped to the vertex &2 with labeli.

Usingld”, one defines thdual payoff mappind~ as the composition dfi”® and
f,i.e.f =Id® o f. This yields

f21 (X2,0X5) — (X2,0X%2) (3.4)

A depiction of f2 is given in 3.14. The only difference to the payoff mappinig that

it mapsX” on X2 instead ofA™ 1,

The difference betweeX” and A™ 1 is that they have the same orientation rela-
tive to projection poinv, = (—mv,...,—nV) for odd m, and opposite orientation for
evenm. This is depicted in Figure 3.15, and can be verified using an inductive argu-

ment.

For notational convenience, let denote the completely labelled pointXf* (as
it does inA™1). Note that both completely labelled pointsXt and A™ 1 have
coordinates%, e n%) with respect to the vertices & and A™ 1. So the equilibria
of a game are represented by exactly those powthat are mapped te, under the

mappingf2. Also, the index can be described by the local degre&-of
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Figure 3.14: The dual payoff mappirfg*

Figure 3.15: The orientation of th¢* andA™1

\‘ \\\C{///// nd Am_l
2 1 o 2
N v "
(-mv,0)- 1N 2 1
1 (L0
2" (0-mv) XA
3

Lemma 3.15 Letws € (f2)~1(v,). Then the index ofis as in Definition 2.9 is the

same as the local degree bf at ws.

Proof. The index in Definition 2.9 is defined by a permutation of the labelsa sim-
plexvvs,A, which corresponds to a permutation of vertices. For a mapping that permutes
the vertices of a simplex, the degree equals the sign of the permutation (see e.g. Dold

(2972, 1V, 4, Example 4.3)). ]

Using the mapping © and degree theory, it follows that the sum of indices over
the equilibria of a game equailsl, so the number of equilibria is odd. This can be seen
as follows. The degree of the mappifig has similar properties to the degree of the
Sperner mapping® described on page 72. Similar to the Sperner mapping, the degree

of the mappingf £ counts the number of completely labelled pointSs(fﬁ, where each
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point is counted with its local degree. This local degree is, by Lemma 3.15, the same

as the index.

Furthermore, the degree of the mappifig is the same as the degree of re-
stricted to the boundary ok>. Similar to the Sperner mapping, the degreef 6f
restricted to the boundary o counts, for a fixed labek € |, the number of almost
completely labelled points on the boundar%ﬁ“ with labelsl — {k}, counted by their
local orientation. The orientation on the boundary is induced by the orientation of the
boundary ofX. This number is independent kf For eachk € I, there is exactly one
point on the boundary oXZ with labels] — {k}. The local orientation of this point
is +1 as it is contained in the face ¥ spanned by-mVg, i € | — {k}. Alternatively,
one sees that” restricted to the boundary is the identity, and hence its degred is

(for a detailed account of degree theory see e.g. Dold (1972) as cited on p. 72).
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Chapter 4

A Strategic Characterisation of the

Index

This chapter provides a new characterisation of the index for equilibria in
non-degenerate bimatrix games in terms of a strategic property. It is shown that an
equilibrium has index-1 if and only if one can add strategies with new payoffs to the

game such that the equilibrium is the unique equilibrium of the extended game.

Suppose one can add strategies to a game such that an equilibrium remains the
unique equilibrium of the extended game. Since the indices of equilibria of a game
have to add up tot-1, it follows that the equilibrium must have indexl in the
extended game. But the index only depends on the strategies played with positive
probability, so it follows that the index of the equilibrium in the original game also
equals+1. Hence, if one can extend the game such that the equilibrium becomes the
unique equilibrium of the extended game, the index of that equilibrium must edual
Here it is shown that the converse is also true, i.e. if an equilibrium has iddeken
one can add strategies such that the equilibrium becomes the unique equilibrium of the
extended game. This yields a new characterisation of the index purely in terms of a

strategic property.

The structure of this chapter is as follows. Section 4.1 shows the result for the
special case of pure strategy equilibria (Lemma 4.1) and motivates the general result
by examining particular examples. Section 4.2 provides some technicalities that are

also needed in Chapter 6. Section 4.3 shows that an equilibrium in a non-degenerate
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bimatrix game has index1 if and only if one can add strategies to the game such that
the equilibrium is the unique equilibrium of the extended game (Theorem 4.6). It turns

out to be sufficient to just add strategies for one player.

4.1 A Geometric Interpretation

The properties of the index imply that the index of an equilibriumt isif one can add
strategies such that the equilibrium becomes the unique equilibrium in the extended
game. The indices of equilibria of a game have to add up1o So the index of a
unique equilibrium in an extended game equals But the index does only depend

on strategies played with positive probability, and hence the index of the equilibrium

in the original game equals1.

Pure strategy equilibria in non-degenerate bimatrix games have idexFor
these it is easy to see that they can be made the unique equilibrium in some extended

game.

Lemma 4.1 LetG be anm x n non-degenerate bimatrix game. Then every pure strat-

egy equilibrium of the game is the unique equilibrium in some extended game.

Proof. Let G be represented by x n payoff matriceA andB. Without loss of general-

ity (otherwise one can reorder the strategies) assume that the pure strategy equilibrium
is given by player | playing strategly and player Il playing strategm+ 1 (i.e. both

play their first strategy). Then add strategy with label n+ 1 for player Il with

payoff column, for smalg > 0,

1.by—¢

0,maxj—1__ nbpj+€
=L (4.1)

O,maxj=1,_. nbmj+¢€

Then strategyn+ n+ 1 strictly dominates all other strategies except for strategyl
of player II. Note thaby; > by forall j € J, for j # 1. So strategie$=m+2,...,m+
n can be deleted. Thereafter, stratdgstrictly dominates all other strategigs .., m
of player I. By iterated elimination of strictly dominated strategies, only the strategy

pair (1,m+ 1) remains. O
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Adding strategies as in Lemma 4.1 alters the dual construction for the game. Take,

for example, gameél~ as in (1.13). The game is given by

1313 7,12 114
H =127 88 21
141 12 11
This game has three equilibria. The mixed equilibrium with indeixin which both
players play(3, ,0), the pure strategy equilibrium with indext in which both play-
ers play(0,1,0), and the completely mixed equilibrium with indext in which both
players play(%, %2, 1%). The labelled dual construction for the game is depicted on the

left in Figure 4.1.

Figure 4.1: An index+1 equilibrium inH ™

Now suppose the game is extended in the following way, so that only the pure

strategy equilibrium remains.

13,13 7,12 114 020
H =1127 88 21 1073}
141 12 11 020
The added strategy dominates stratediasad6 of player Il. So strategie4 and6 can
be deleted. Then strate@yof player | is the best reply to both strategleand7, and
the best reply to strateg®is 5. Thus the pure strategy equilibrium in which player |
plays strategy? and player Il plays stratedy (with payoff 8 for both players) is the

unique equilibrium of the extended game.

Adding strategies changes the dual construction for the game. Consider the labelled

dual construction for the extension of the game (1.13), which is depicted on the right
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in Figure 4.1. The paths that start from the completely labelled point that represents
the pure strategy equilibrium lead directly to the boundary. In the original game some
paths in the dual construction lead to other equilibria of the game as shown on the left
in Figure 4.1. So, in order to make an indexd equilibrium the unique equilibrium

of an extended game, the paths that start in the fully labelled point representing the
equilibrium have to be “re-routed” such that they connect directly with the boundary
of the dual construction, also not creating other equilibria (e.g. pairs of inaccessible

equilibria).

The idea of “re-routing” the paths is the main idea in the proof of Theorem 4.6
below. To give the reader an idea of the process, the procedure is first applied to ex-

amples before it is technically specified in the proof of Theorem 4.6. Take for example

{1,3 02 1 o}
. 4.2)

the following game.

0,0 1,2 03
Game (4.2) has 3 equilibria. The pure strategy equilibridn®), (1,0,0) with in-
dex +1, the mixed equilibrium(3, 3), (3, 3,0) with index —1, and the mixed equilib-
rium (3 3) (O, %, %) with index+1. The dual construction for this game is given on
the left in Figure 4.2 (the dots represent the vertices of the simplitks

Figure 4.2: An index+1 equilibrium form= 2

Now suppose one wants to make the equilibrig§ni), (0,3, 1) the unique equi-
librium of an extended game. The dual construction shows how to achieve this. Add a
strategyb6 for player Il, covering the best reply region of strateygnd a small part of
the best reply region of stratedy This can, for example, be achieved by choosing the

payoff vector( o) for player 1. The new division oK and its dual are depicted on the
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right in Figure 4.2. Then choose strategyo be the best reply to the new strategjy
by, for example, choosing the payoff vecid) for player I. Then(3,2),(0,1,1,0) is

the unique equilibrium of the extended game

1,3 02 1,0 04
[ ] “s)

00 1,2 03 10|

The orientation around an index1 equilibrium in the labelled dual construction
agrees with the orientation &”. This allows one to “re-label” the regions in the
dual construction by adding strategies such that the ireerquilibrium remains the
unique equilibrium in the extended game. For &w n game the procedure is very
straightforward and easy. It can easily be verified that one only has to add at most two
strategies for player Il to make any index equilibrium the unique equilibrium in an

extended game.

In higher dimensions, the process of eliminating the other equilibria without cre-
ating new equilibria is more advanced. Consider, for example, the follo®ing@
coordination game.

1010 00 0,0

0,0 1010 00 |- (4.4)

0,0 00 1010
Game (4.4) is the same as the gahegiven by (1.16). All three pure strategy equi-
libria have index+1, the three mixed equilibria with two strategies as support have
index —1, and the completely mixed equilibrium has indeg again. Making a pure
strategy equilibrium of (4.4) the unique equilibrium in an extended game is straight-
forward (see Lemma 4.1). So suppose one wants to make the completely mixed equi-
librium the unique equilibrium of some extended game. In order to do so, one first
has to cover the old equilibria with new strategies. This can be done, for example, by
adding strategies with labefs8 and9 for player Il as shown in Figure 4.3. In a neigh-
bourhood of the vertex= (%7 %, %) € X, the structure of the best reply regions remains
unchanged. This implies that the simpl&x containing the completely labelled point
remains unaffected by the added strategies. This first step determines the payoffs of
player Il for the added strategies and gives a trianguldtgt| in which the original

simplexv® and its division are as in the original game.
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Figure 4.3: A unique index-1 equilibrium in an extension of the coordination game

Second, one has to choose the appropriate payoffs for player I. The right of Fig-
ure 4.3 shows how the paths starting in the corresponding dual of the equilibrium can
be “re-routed”. So the payoffs for player | are chosen in such a way that the almost
completely labelled points on the boundarywdf are connected with the respective
almost completely labelled points on the boundary of the dual. The game that corre-

sponds with the labelled dual on the right in Figure 4.3 is given by

10,10 00 00 011 105 0,—10
0,0 1010 00 0-10 011 105 . (4.5)
0,0 00 1010 105 0-10 011

So, in order to prove that an indext is the unique equilibrium in some extended
game, one essentially has to show two things. First, that the paths can in fact be re-
routed. This is ensured by the indexd condition. Second, one has to show that these
paths can actually be created by extending the game. This is to say that in the labelled
dual construction of the extended game the paths starting in the equilibrium connect
directly with the boundary. Adding columns to the payoff maBixefines the mesh of

X%, and the payoffs for player | determine the paths.

4.2 Some Technical Requisites

The proof of Theorem 4.6 below is based on the approximation of a homotopy that
“re-routes” the paths. In order to show that the approximation of the homotopy can

be achieved by adding strategies, this section provides some technical results that are
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required in the proof of Theorem 4.6. These technical results are also used in the

characterisation of index zero outside option equilibrium components in Chapter 6.

Let A be an(m— 1)-simplex in a regular triangulatiopA™ 1 | of A™1 with no
vertices on the boundary @™ 1 other tharg, i € . Now consider an iterated refine-
ment of| A™1| — A that is achieved by subsequently adding verticggt®1| — A,
allowing to add vertices on the boundary|ak™ 1| or A. Let the added vertices be
denoted as1, ..., VN, Where the subscript denotes the order in which the vertices were
added. Now add the simplex. The resulting object is a division ¢fA™1| into
simplices that is not a triangulation pA™|. Such a division of A™ 1| is referred
to as anterated pseudo refinemenAn illustration of an iterated pseudo refinement is

given in Figure 4.4.

Figure 4.4: An iterated pseudo refinement

Lemma 4.2 Given an iterated pseudo refinement'df—1, one can subsequently delete
those vertices that were added to the boundaryxadind A™1 in order to obtain a

regular refinement of A™1 |,

Proof. Letvs,...,vn be the set of vertices added to the triangulation, where the sub-
script reflects the order in which the vertices are added/ALet{1,...,N} denote the
ordered subset for those vertices that were added to the boundargfA™ 1. Now

take the vertex,, for A € A\, that is added last to the triangulation, and consider the iter-
ated pseudo refinement that is obtained by adding the set of veltices. , vy} — {w\ }

in canonical order. Continuing with the second last vertex that was added to the bound-
ary of A or A™1 and so forth, finally gives an iterated pseudo refinement with no
vertices added to the boundary of or A™ 1. Hence, the refinement achieved by
adding the set of verticels/y, ..., vn} — {v\ | A € A} (in canonical order) is regular by
Lemma 3.12. U
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Figure 4.5: The regular refinement obtained from the iterated pseudo refinement

The refinement that is obtained by the iterated pseudo refinement in Figure 4.4 is
depicted in Figure 4.5. The result of Lemma 4.2 extends in a straightforward way
to collections of simplicesJ; 2; in a triangulation| A™*| and iterated pseudo re-
finements that are obtained by refining™ 1| — J; Ai. So every iterated pseudo
refinement yields a regular refinement by omitting those vertices that were added to
the boundary ofJ; Aj or A™ 1,

Now consider an iterated pseudo refinemenkdsf| —v2. Vertices that were added
to the boundary oK2 or v© are referred to agseudo verticesAssign a payoff vector
A, to each added vertex. If the added vertex is a pseudo vertex, then the payoff
vector is referred to as@seudo payoff vectoEach pseudo vertekcan be described
as a convex combination of— 1 verticesvs,...,vm_1 on the boundary oK or the

boundary of/®, i.e.¥= 3™ v, with 1L p= 1 andy > 0.
Definition 4.3 The pseudo payoffs are callednsistentf Ay = z{‘;‘lluA\,i.

For each simplex in the pseudo refinementXf | — v*, the payoff vectors and
pseudo payoff vectors induce a division into labelled regions as described by (2.7),
where the columns of the payoff matrix consist of the payoff vectors and pseudo payoff
vectors that are assigned to the vertices of the simplex. This division is referred to as a

pseudo division

Now consider the regular refinement induced by an iterated pseudo refinement. The
following lemma is similar to what was used in the proof of Corollary 3.13. That s, if
the pseudo vectors have consistent payoffs, then the induced divigéft pf v* into
labelled regions is unaffected by deleting the pseudo vectors from the iterated pseudo

refinement.
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Lemma 4.4 If the pseudo payoffs are consistent, then the pseudo divis|Xtof- v~
into labelled regions is identical with the division p¢~| — v* into labelled regions

that is obtained by deleting the pseudo vertices from the iterated pseudo refinement.

Proof. The proof is illustrated in Figure 4.6. The consistency of the payoff ensures
that the division of a larger simplex is given by the division of the smaller simplices.
In the figure, the payoff fow is consistent with the payoffs fon andv,. Then the
union of the simplices spanned Py, v, v} and{v,v3,Vv} yields the same division as

the simplex spanned by, V2, Vvs}.
Figure 4.6: Pseudo vertices with consistent payoffs

e

" Vo

Let v denote the simplex that was last added to the face~obr X*. Thenv =
z}‘zluivi, with 11y = 1 andy; > 0, where the vertices, span thek — 1)-simplex on
the (m— 2)-face that contains. These vertices might be original vertices or pseudo
vertices. In any case, one hag= S ; wA,,. Now deletev from the iterated pseudo
refinement. Consider a simpleX spanned by, ..., vk and somev.1,...Vm. The

division of A is induced by the payoff vectors,,, ..., Ay,

The simplexA is the union of smaller simplices for which the verteveplaces one
of the verticey;, 1 <i <k, of A. Since the payoffs are consistent, the induced division
of A into labelled regions is also the same as the union of the smaller simplices divided

into labelled regions. O

Finally, one needs a topological lemma, which says that the payoff mapdiag
in (3.3)) restricted to the boundary of* can be deformed into a mapping that maps

the boundary of” on the boundary ofA™ 1,

Lemma 4.5 Letv” be a simplex inX*|. Then there exists a homotopyhat deforms

f (or f2) restricted to the boundary of® into a mapping that maps the boundary
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of v& on the boundary o™ (or the boundary oX%). The homotopy is such that
h(x,t) # Vi V(x,t) € av*> x [0, 1].

Proof. Take a simplex” in |[X%|, and letdv” denote its boundary. If the image wt
containsv,, thenv, must lie in the interior off (v**). If the image does not contain,
thenv, must have a positive distance frohiv®*). This is due to the non-degeneracy

assumption.

Then one can retract the image of the boundf@v™) as follows: Letx be a
point on f(av>). Then take the line betweenandv, in direction ofx, and define
the retractiorr (x) as the point on the boundary af™! in which the line intersects
with the boundary ofA™1. Algebraically, the point(x) is the normalised form of
the vectorx — (ming;X) - 1m. The retractiornr (x) can be described as a homotopy
h: ov® x [0,1] — A™ 1 given byh(x,t) =t-r(x)+ (1—t)-x. Note thath(x,t) #

V. V (x,t) € 0v® x [0,1], sincex andr (x) have the same labels.

A deformation off restricted ta@v” yields a deformation of © restricted tav”,

sincef? = 1d% o f. H

Lemma 4.2 and 4.4 are needed in the proof of Theorem 4.6 below. In the proof,
a certain mapping is approximated. For this one needs to construct a triangulation
with a sufficiently small mesh. This can only be achieved by adding vertices to certain
boundary faces. However, if the payoffs are consistent, then these vertices can be
omitted, as it does not change the combinatorial division into best reply regions. In
particular, one obtains a regular triangulation and a division into labelled regions that
can be obtained as the dual construction for some bimatrix game. Lemma 4.5 is needed

to construct the mapping that is approximated.

4.3 A Game Theoretic Characterisation of the Index

This section proves the main result of this chapter, i.e. an equilibrium in a game has
index +1 if and only if one can add strategies to the game such that the equilibrium
becomes the unique equilibrium in the extended game. The idea of the proof is to “re-

route” the paths as described earlier. $a) is an equilibrium. In the labelled dual
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construction, this equilibrium is represented by samge v2. In particular, if the in-
dex of the equilibrium isr-1, the dual payoff mapping” restricted to the boundary of
v2 has also degree1. By a well-known result from algebraic topologfy® restricted
to the boundary of” and f2 restricted to the boundary of the” are homotopic
via some homotopy. This allows one to “re-route” the paths startingwg so as to

connect them directly with the boundary without creating new equilibria.

Theorem 4.6 Let G be some non-degenerate bimatrix game. (Mgt/) € X xY be an
equilibrium of the game. Thefv,w) has index+1 if and only if one can add finitely
many strategies such thév,w) is the unique equilibrium of the extended game. It

suffices to add strategies for only one player.

Proof. Let (v,w) € X xY be an equilibrium of the game. First, all unplayed strategies
of player Il can be eliminated by new strategies that dominate them. If pure strategy
j € Jis not played in equilibrium, one can add a pure stratggyith payoff Bj +¢,
wheree € R™ is a vector with small positive entries. This replaces the original vertex
in |[X2| representing strategiywith a vertex representing the new stratggyIn the

dual polytopeP?, this corresponds to adding a vertex to the bounda®‘othat lies
slightly above the original vertex. This yields the same regular triangul&46mn as

before.

Now consider the boundary of*. Without loss of generality assume that all pay-
offs for player | are positive and that the payoffs in the columnd afild up to 1, i.e.
|Aj| = 1for j € J as assumed in the constructionfdf. Let (v,w) be an equilibrium

and consider the restriction éf* to v**. Denote this restriction al?@.

The degree of the equilibrium is given by the local degredﬁgfaround the com-

pletely labelled pointvs, wherews denotes the lifted point oiv. The local degree is

A
|ov

has degree-1. The degree of 2 restricted to the boundary &“, denoted as

the same as the degree iﬁﬁ restricted to the boundary of, denoted ad’’ ., and

AN
jOXA

is also+1. Considering the payoff mappinginstead of the dual payoff mapping, this
implies thatf‘a\,ﬁ andf|aXA are homotopic (see e.g. Spanier (1966, 7.5.7)). First retract
flav2 to the boundary of\™1 as shown in Lemma 4.5, then deform it inftgy ~ along

0A™ 1. The construction is such that no point along the homotopy is mapped on
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Denote this homotopy &s The homotopyis given a: 0 A™ 1 x[0,1] — AM1L
such that(-,0) = fja,a andh(-,1) = figxa. If v2 shares a commok-face withX*
(i.e. not all strategies of player | are played with positive probability)inthen the
mappingsfw\,A and f\axﬂ agree on that face by construction, and it can be assumed

thath(x,-) = f|3,» (x) for pointsx on that face.

But this gives a mapping, also denotechaen the spacX” — v~ that agrees with

f on the boundaries o andv” and whose image does not contain So

h: X2 —v® — AL (4.6)

This yields a division o)X~ — v~ into labelled regions such that no point is com-
pletely labelled. The regions are defined as the pre-images of the regitis in The
division of v* is as before. This is depicted in Figure 4.7 for the equilibrigvnw; )

in the game of Example 2.3.

Figure 4.7: A homotopy

Now consider the triangulatioX”|, and consider an iterated pseudo refinement of
X2 — V2. This iterated pseudo refinement can be assumed to be such that no simplex
has a diameter more than sode- O (see Lemma 3.11). Now assign payoffs for
player | to the added vertices accordingp= h(v). If the simplices are small, their
images inA™ 1 are also small simplices s uniformly continuous), and no simplex

containsv,. This is depicted in Figure 4.8.

The pseudo payoffs for vertices that were added to the boundar¥s ahdv”
are consistent with the payoffs for the verticeskéf andv”. Therefore, these vertices
can safely be omitted without creating fully labelled points according to Lemma 4.4,

and the resulting refinement is regular by Lemma 4.2. This refinement is a regular
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triangulation and can be achieved by a payoff matrix where strategies for player Il are
added (Lemma 3.12). The refinement determines the payoffs for player Il. The payoffs

for player | are given by the homotoy O

Figure 4.8: An approximation of the homotopy

In the proof of Theorem 4.6, the simplices in the refinement are chosen to be suffi-
ciently small since the homotogyis not further specified. It is likely that, in the case
of the payoff mapping, one can easily describe the deformatiorf eéstricted to the
boundary, especially if considering the combinatorial aspects of the problem (instead
of describing it as a topological problem). Furthermore, one is not necessarily bound
to refining| X% |, but can actually create a new regular triangulation that leaves the sim-
plexv® unaffected. So, instead of adding sufficiently many strategies, it is likely that

“a few” added strategies are enough.

As for the equilibrium(vy,wq) of the game in Example 2.3, it is sufficient to just
add one strategy instead of many as suggested by Figure 4.8. The game described

below only has the equilibriurfv1,w;) as a unique equilibrium.

0,0 1010 00 10-10 011
1000 00 010 08 11
810 00 100 88 0,1
Figure 4.9 depicts the corresponding labelled dual for the extended game.
So the natural question arises about the minimal number of strategies one needs to

add in order to make an equilibrium the unique equilibrium of an extended game. In

the2 x n player case, it is sufficient to just add two strategies for player 1l to make any
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Figure 4.9: The labelled dual for an extension of the game in Example 2.3

index+1 equilibrium the unique equilibrium of an extended game. Whether adding

or 2m strategies suffices in higher dimensions is unclear.

Remark 4.7 Instead of considering the homotopyon X — v2, one can actually
define it on the “cylinder” that is obtained by deletin¢ andv® from the surface of

the polar polytopd” that corresponds to the game.

Hofbauer (2000) defines two paifG, (v,w)), (G, (V,w)), where(v,w) is an equi-
librium of G, and(V,w) is an equilibrium ofG/, equivalent if the gam& restricted
to the support ofv,w) is the same as the gan@ restricted to the support ¢f/,w').
He calls an equilibriunfv,w) of a gameG sustainable if there exists an equivalent pair
(G, (V,w)) such thatV',w) is the unique equilibrium o&’. He conjectures that an
equilibrium has index-1 if and only if it is sustainable. The results from above prove

this conjecture in the case of non-degenerate bimatrix game.
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Chapter 5

Outside Option Equilibrium

Components

The aim of this chapter is to extend the dual construction to outside option equilibrium
components. This yields a new interpretation of the index for outside option equilib-
rium components that is very similar to a generalisation of Sperner's Lemma which
is in the literature referred to as thedex Lemmdsee e.g. Henle (1994), p. 47). The
Index Lemma applies to more general boundary conditions, and states that the sum of
orientations of completely labelled simplices can be deduced from the boundary con-
dition. This new approach allows a new characterisation of index zero outside option

equilibrium components in bimatrix games, which is the subject of Chapter 6.

An outside option can be thought of as an initial move that a player can make
which terminates further play, and gives a constant payoff to both players. If the player
has not chosen his outside option, the original game is played. Take for example the
game described in (1.15) in Chapter 1. A representation of the g¥ni® given in
Figure 5.1, where the bottom left entries in a cell are the payoff for player | and the
top right entries in a cell are the payoffs for player II. This game has two equilibrium
components: The single equilibrium bf~ with payoff 10 to both players, and the
outside option equilibrium component with pay&ffor player Il and payoffO for

player I.

In terms offorward inductionthe only reasonable equilibrium is that with pay-

off 10. Not playingOut in the first place is only reasonable if player Il plays the equi-
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Figure 5.1: A representation of an outside option game

13 12 14
13 7 1 9
7 8 1 0
12 8 2
1 2 1
14 1 1

librium strategy that yields payotfOin H~. Player | knows this and plays accordingly
once the gamel~ is entered. The notion of forward induction is a concept that applies

to extensive form games (van Damme (1989)). Other authors, in particular Kohlberg
and Mertens (1986), argue that games should be analysed in their normal form and that
solution concepts should be independent of the representation of the game. The index
of an equilibrium component is an invariant, i.e. the same in all equivalent games and
hence independent of the representation of the game. Therefore, understanding the na-
ture of the index for outside option equilibrium components can help in understanding
which solution concepts might capture the notion of forward induction (see e.g. Hauk
and Hurkens (2002)). In Chapter 6, it is shown that an outside option equilibrium com-
ponent is hyperessential if and only if it has non-zero index. It follows that an outside
option outcome cannot be hyperessential if the forward induction equilibrium is a pure
strategy equilibrium that is strict (that is, all unplayed pure strategies have a payoff that

is strictly lower than the equilibrium payoff).

The structure of this chapter is as follows. Section 5.1 reviews a generalisation
of Sperner’s Lemma which is sometimes referred to as the Index Lemma (Proposi-
tion 5.2). In Section 5.2 it is shown how this relates to outside option equilibrium
components (Corollary 5.4). Section 5.3 discusses potential generalisations and the
apparent limitations of the dualisation method regarding general components of equi-

libria.
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5.1 A Generalised Version of Sperner's Lemma

In Sperner’s Lemma, the existence of a completely labelled simplex is ensured by the
Sperner condition. Moreover, accounting for the orientation, the boundary condition
determines that there exists one more completely labelled simplex with orientdtion
than with orientation—1. In this section, it is shown how Sperner’s Lemma can be
extended to cope with more general boundary conditions. This yields a generalisation
of Sperner's Lemma that is in the literature referred to as the Index Lemma (see e.g.
Henle (1994, p. 47)).

Let P be an(m— 1)-dimensional polytope. Furthermore, |& be a triangulation
of P into simplices of dimensiom— 1. A triangulation ofP is a finite collection of
simplices whose union iB, and that is such that any two of the simplices intersect in
a face common to both, or the intersection is empty. A triangulatioR imiduces a
triangulation|dP| of the boundaryP into simplices of dimensiom— 2. LetL be a
labelling of the vertices ofP| with labels inl = {1,...,m}. As before, one can define
a Sperner mapping

£S: (|P,|0P)) — (ATH0AT ),

whereA™ ! denotes the canonical division described in Chapter 3 (see Definition 3.4):
Every vertex of[P| is mapped to the vertex in™ ! with the corresponding label, i.e.
L(v) = L(fS(v)). ThenfSis obtained by linearly extending it to the simplices/Ri.

Note that if a(k — 1)-simplex hasj < k distinct labeld; C I, then it is mapped on the

(j —1)-face of AT that is spanned by the vertices with labglsThe restriction of

fS to the boundary oP is denoted asﬁsp.

Definition 5.1 The index of the labelling of |P| is defined as
(L) = degf3p, (5.1)

wheredeg f|§P denotes the degree of the mappii@a.

As for the Sperner case, the degosy f‘gp measures, for an arbitrary but fixed label
k € 1, the number of almost completely labelled points with laldels{k} on the
boundary, where each such point is counted with its orientation. The orientation on

the boundary is induced byx™ . This is depicted in Figure 5.2. The dotted line
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represents the image of the boundaB/around”dA™ . The mapping in Figure 5.2
has degree-1. The image of the boundary is homotopic to a single winding around
AM™1. So the index of the labelling in Figure 5.24<.

Figure 5.2: A general version of Sperner’s Lemma

The degreealeg f‘gp on the boundary is the same as the degiefS of the map-
ping fS. The proof of this claim is equivalent to the construction in the proof of The-
orem 3.3. There, the orientations @h— 2)-faces in the interior cancel out. The
degreefS measures the number of completely labelled points, i.e. the pre-images of
V., where each pre-image is counted with its orientation, which is the local degree (see
Figure 5.2). This fact thadeg fSP is the same adeg f° yields the following, well-
known result, which says that the labelling of the vertices on the boundary determines
the number of completely labelled simplices in the triangulation (for a detailed account

of degree theory see e.g. Dold (1972) as cited on p. 72).

Proposition 5.2 (Index Lemma) Let |P| be as above with labelling. Then the sum

of orientations of the completely labelled simplice$Rhequalsl (L).

Proof. The pre-images of, correspond to the completely labelled simplices, and the
local degree at a pre-image is the same as the orientation of the simplex that contains
it. The degree equals the sum of local degrees, and is determined by the boundary

condition.

Alternatively, one can use the same approach as in the proof of Theorem 3.3 to
obtain the result without using degree theory. In this case, one would essentially show

thatdeg f‘gp on the boundary is the same as the degespf S, O
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The Index Lemma is sometimes summarised with the phrase “The index equals the
content” (see e.g. Henle (1994, p. 47)), meaning that the boundary condition (i.e. the
index) determines the number of completely labelled simplices in the triangulation (i.e.
the content), accounting for orientation. In the next section, it is shown that a similar

description applies to outside option equilibrium components.

5.2 The Index for Outside Option Equilibrium Compo-

nents

In Chapter 3 above it is shown how the classical Sperner condition applies to equilibria
in non-degenerate bimatrix games. This section demonstrates how the Index Lemma
relates to components of equilibria. The dual construction shows that the index of a
component is defined by a boundary property similar to the Index Lemma. This bound-
ary property determines the sum of indices of equilibria close to the component if the
game is generically perturbed by small generic perturbations. In particular, it is shown
that the sum of indices of equilibria close to the component is independent of the per-
turbation. This “invariance” property of the index for components of equilibria is not a
new result (see the properties for components of equilibria listed in Section 1.3). What
is new, however, is the geometric-combinatorial view on the index for components of

equilibria.

The analysis is restricted to generic outside option equilibrium components in bi-
matrix games represented in strategic form by payoff matcasdB. Without loss
of generality it is assumed that the player with the outside option is player Il. When
player Il plays the outside option, the payoffs for player | and player Il are independent
of player I's strategy choice. So the columnfothat represents the payoffs for player |
in the outside option has identical entries, and so has the colurBritadt represents
the payoffs for player Il in the outside option. An outside option equilibrium compo-
nentis referred to agenericif the payoffs for player Il are generic and if all payoffs for
player | other than the outside option payoffs are generic. Thus the only degeneracy of

the game arises through the payoffs to player I in the outside option. This implies that
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the payoffs for the equilibria that are cut off by the outside option are strictly smaller

than the payoff in the outside option.

When constructing components of equilibria via outside options (see Section 1.4),
it is possible to compute the index of such components purely on grounds of basic
properties of the index. In particular, one does not have to go into details regarding the
geometric-combinatorial aspects. These aspects, nevertheless, play an important role
in the characterisation of index and (hyper)essentiality in Chapter 6. The examples
given below are meant to illustrate the geometry behind the index for outside option
equilibrium components by means of the labelled dual construé(fén A formal

definition is given later in this section.

The problem with degenerate games is that, instead of having singleton solutions,
one has to consider components of equilibria. This is due to the fact that the number
of best reply strategies is not bounded by the size of the support (see Definition 1.1).
In the case of an outside option in anx n bimatrix game with an outside option for
player II, the pure strategy representing the outside option for player hipage best
reply strategies since all the payoffs for player | are the same in the outside option. In

this case, the outside option equilibrium compor@ig given by
C = {(x,0ut) € X xY | Outis best reply toc},

whereOut denotes the pure strategy that represents the outside option.

In general, the dual construction cannot be applied to degenerate games. This is
due to the fact thatX”| is not well-defined if the payoff matriB is degenerate. In
the case of generic outside options in bimatrix games, however, the payoff Batrix
is generic, since it does not matter if a columrBolias identical entries. This allows
one to apply the dual construction to such games. Consider, for example, the following

3 x 4 coordination game with an outside option for player II:

10,10 00 00 0,9
0,0 1010 00 0,9]. (5.2)
0,0 00 1010 09

This is the same gam®& 2 in (1.17) in Chapter 1. The outside option equilibrium

component has index2. The three pure strategy equilibria of the game with payoff
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10 (which are not cut off by the outside option) each have ingéx Since the sum of
indices over all equilibrium components must equdl the outside option equilibrium
component has index2. This can be interpreted geometrically in the following way.
Label the strategies of player | with2 and3, and those of player Il witH4,5,6 and

Out. Then apply the dual constructionXato obtainX’. Figure 5.3 shows the division

of X into best reply regions on the left. Next to it is the corresponding labelled dual
constructiorv(*A. StrategyOut yields a constant payoff to player I. Therefore, the best
reply regions in simplices® for which a vertex ofv® represent©ut all join in the

vertex that represen@ut.

Figure 5.3: An outside option component with inde®

7
‘

The dual payoff mapping” as in (3.4) is, however, well-defined &+, including
those simplices that are the duals of the vertices of the best reply regi@ufonn
particular, the dual payoff mappinkf® is well-defined on the boundary of the dual of

the outside option component.

Thedual of the outside option componeasithe union of all those simplices that are
the duals of the vertices of the best reply region@ut. These are the simplices that
haveOut as a vertex. The vertex that represedtg has all labels, since every strategy
of player | is a best reply again€Qut. In particular, the completely labelled point
does not lie in the interior of a simplex, which would be the case for non-degenerate

bimatrix games. This is depicted on the right in Figure 5.3.

The dual of the component can now be used to define the index of an equilibrium
component. For this, consider the dual payoff mapping restricted to the boundary of
the dual of the component. For the example in Figure 5.3, the imadé oéstricted
to the boundary cycles twice around the completely labelled vertesut in opposite

direction: Following the boundary of the component in anti-clockwise direction in
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X2, the resulting paths runs in clockwise direction around Hence, the index of

the component is-2. As in the case of the Index Lemma, the index counts, for a
fixedk € I, the number of almost completely labelled points with labelsk} on the
boundary of the dual of the component, where each such point is counted by is local
orientation. For the example in Figure 5.3, there are two points on the boundary of the
dual of the component with labels3, both of which are oriented in the opposite way

as the point with labels, 3 on the boundary ok“. The same holds when considering

points with labelsl, 2 or 2, 3.

As another example, consider tBex 4 game with an outside option for player I

as shown below.
1313 7,12 114 09

127 88 21 09]. (5.3)
141 12 11 09
This is the gam&*2 (1.15) as in Chapter 1. The outside option has, by the same rea-

soning as before, index2. Figure 5.4 depicts the division &f into best reply regions

Figure 5.4: An outside option component with indeg

and the dual constructio)ﬁ*A for this game. For the above example, the mapifig
restricted to the boundary of the dual of the component yields a path running twice
aroundv,. This time, the orientations of the boundary and its image agree. For every
kel ={1,2 3}, there are exactly two points on the boundary of the dual of the com-
ponent with label$ — {k} and whose orientation is the same as that of the point on the

boundary ofX” with labelsl — {k}. Therefore, the index of this componentg.

These observations can be formalised as follows. Considaranbimatrix game
with an outside option for player Il. Note that it is not necessary to assumentiat.

Let C denote the outside option equilibrium component. Vebe the set of those
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vertices in player I's strategy spagethat haveOut as a best reply, sd = {ve V|

Out € L(v)}. Now take the union of thosé® for whichv €V, soC» = [Jyey V*. This
union is referred to as th@ual of the componer@ or thedual of the outside option
equilibrium component~or generic outside options, the reg(Out), i.e. the region

in X whereOut is a best reply, is a full-dimensional and convex region with vertices
that havem labels (or it is empty). Hence, the €&t is a union of(m— 1)-simplices.
These simplices yield a triangulation 6. If vou denotes the vertex 82 that
represents the best reply region with laBelt, thenC~ is star-shaped with respect to
Vout. This follows from the fact thaE” is a union of simplices who all hawg as a

vertex.

The boundary o€” is denoted a8C”. The simplex” is an(m— 1)-simplex for
all ve Vv, and the boundar§C? is the union of thgm— 2)-faces inC* that do not
include the vertex that represer@sit. From the dual construction it follows that the
pair (C#,0C*) is homeomorphic t§A™ 1,0 A™1). The dual payoff mapping” as
in (3.4) is well-defined on the boundadZ”. The restriction off * to the boundary of
C% is denoted ag’ o

The image off ., consists of the union dim— 2)-simplices

jacs” e
in X2 that are spanned by the images of vertices of(the- 2)-faces on the boundary
of C2. The image o1‘f‘§CA itself does not contain,. So the image of@cA can be

thought of as somém— 2)-sphere around, that consists ofm— 2)-faces.

Definition 5.3 Let C be an outside option equilibrium component of a game with a
generic outside option. Then the ind&C) of the component is defined as the

degree of the mappinqgcA.

So, as in the Index Lemma, the index is defined by the division of a boundary into
labelled regions. In the Index Lemma, the regions arise from the magpirgefined

by unit vectors on eactm— 2)-face. In the game theoretic context, the regions arise
from the mappingf~, defined by a mixture of payoff vectors and unit vectors. As

in the Index Lemma, however, the index of a component measures, for a fixed label
k, the number of almost completely labelled points on the boundary of the dual of the
component. Each such point is counted with its local orientation, and the measure does

not depend on the choice kf
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Note that the image of|§CA can be retracted to the boundary#®. This works

A
jocA

traction as the intersection of the line betwegrandp, in the direction ofp, with the

in the same way as Lemma 4.5: ffis a point in the image of define the re-

boundary ofX2. Note thatv, does not lie in the image of>... This is due to the

ach
non-degeneracy of the payoffs representing other strateglieghtan

For generic outside options, only payoff perturbations for player | in the outside
option are of relevance. This can also be seen using the labelled dual construction.
Small perturbations of the payoff matrileave the combinatorial structure ¢~ |
invariant, since the combinatorial structure of the best reply regioKgsrunaffected.
Small perturbations of the payoff matrix leave the combinatorial division @C*
into best reply regions invariant, since for all simplis€sand their faces that do not
involve Out, the combinatorial division into best reply regions is invariant with respect
to small perturbations. It follows from Definition 5.3 that small perturbations of the
payoffs leave the indel(C) invariant. Perturbations of player I's payoffs in the outside
option, however, spliE” generically into labelled regions and determine those points
in the interior ofC2 that are mapped to.. These are the Nash equilibria that “survive”

perturbations of the payoffs.

The local degree of 2 at these pre-images is the index of the equilibrium (see
Lemma 3.15). But the sum of local degrees equals the degree of the mapping, which
is again the same as the degreef6f restricted to the boundary of the dual of the

component. As a consequence, one obtains the following, well-known result.

Corollary 5.4 Let the index of a generic outside option equilibrium component be
I(C). Then every small generic perturbation yields equilibria close to the component
C such that the indices of these equilibria add up (©).

Proof. The proof follows the same lines as the proof of the Index Lemma, and is a
consequence of the fact that the degree of a mapping is the same as the degree of a

mapping restricted to its boundary.

An illustration of the proof is given in Figure 5.5 for a perturbation®f? as in
(1.17) (compare Figure 5.3). The perturbation that is depicted is given by the payoff
vector (g,0,0) " for player I in the outside option. For the illustratianis chosen to

be large. It should be noted, however, that the combinatorial division of the dual of the
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component does not depend on the magnitude(sée also Lemma 6.4 in Chapter 6).

Figure 5.5: A perturbation of an index2 component

The combinatorial and geometric properties of the map;ﬂ@tgg are not affected
by small perturbations. Generic perturbations, however, perturb the dual payoff map-
ping f2 in the interior ofC~. Let the restriction of 2 to C~ be denoted aﬁéﬁ. Thus
every small generic perturbation of the game gives a map@g: CA — X2, Al-
though the mapping itself does depend on the perturbation, the If@¢xdoes not,
since the degree df@cA stays invariant under small perturbations for the reasons ex-
plained above. The payoff perturbation renders the game generic and, hence, yields a
generic division of£2 into labelled best reply regions (see Figure 5.5).

A
A

sum of local degrees at the pre-images.oin C2. These are the completely labelled

The degree of -, is the same as the degreef@'@, and can be computed as the
points inC~ that represent equilibria in whidbut is played with positive probability.

This local degree is the same as the index of an equilibrium.

Since the perturbation is generic, these pre-images lie in the interior of\&oine

C2 and, for small perturbations, lie close to the vertex that repreSartts O

For example, in Figure 5.5 one obtains two completely labelled points that read
1,2,3 in clockwise direction, i.e. both have indexl. As noted above, Figure 5.5
depicts the case for a large For a smalk, the completely labelled points lie close to

the original vertex representir@ut, but the combinatorial division stays invariant.
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Corollary 5.4 is of course not a new result (see Section 1.3). New, however, is
how it relates to the Index Lemma. In the Index Lemma, the index was defined as
the degree offS on the boundary. For outside options it is the degreé‘ofon the
boundary of the dual of the component. Althouffharises from unit vectors while
2 arises from general payoff vectors, in both cases the division of the boundary into
labelled regions determines the sum of orientations of completely labelled points (or
simplices) in the interior. As for the Index Lemma, one can summarise the result under
‘The index equals the content”. The boundary condition (i.e. the degree of the mapping
on the boundary of the dual of the component) determines the number of completely
labelled points in the interior of the dual of the component (i.e. the Nash equilibria that

useOut), accounting for orientation.

5.3 Degenerate Games and General Equilibrium Com-

ponents

This section describes how the dual construction might be applied to other components
of equilibria. For example, the above analysis does not require that the payoffs for
player Il in the component are constant and independent of player I's strategy choice
(as it is the case for outside options). Nevertheless, there are limits to the application
of the dual construction to general components of equilibria in degenerate bimatrix

games.

Take anm x n bimatrix game. If the payoffs for player Il are non-degenerate, the
triangulation|X*| is well-defined. Furthermore, the dual payoff mappirigin (3.4)
is well-defined since the payoff mappirfgis well-defined. It is easy to verify that
the Nash equilibria correspond with those points that are mappedunderf2. So
the Nash equilibria still correspond to completely labelled points. This follows from
the definition of the payoff mappin§ as in (3.3) via the artificial payoff matrix. The
difference is that completely labelled points might, for example, lie on the boundary of
a simplexv>, or that almost completely labelled points lie on some lower dimensional
k-face of somev”™ for k < m—2. Also, there can be connected sets of completely

labelled points in the labelled dual construction.
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The latter case is illustrated by the following example.

0,0 1010 00 0-10
0,0 00 010 08 (5.4)
0,10 00 100 08

This is a variant of Example 2.3. Against strategleand 7 of player I, player | is
indifferent between strategigs2 and3. So the equilibrium component here is for
player | to play some strategy in the union of the best reply regiqd$ andX(7), and

for player Il to play a best reply strategy, which is either strat#égy7, or a mixture of

both. In the latter case, the strategy of player I lies in the intersection of the best reply

regionsX(4) andX(7), and player Il can play any mixture between stratediaad?.

The dual of this component is depicted in Figure 5.6, in which the union of the
best reply regionX(4) andX(7) is represented by a dashed line between the vertices
that represent the best reply regions with labelnd7. The mappingf~ is well-
defined. In particular, it is well-defined on the boundary of the dual of the component
C, and has degree zero: There is no point on the boundary of the dual of the component
with labels2, 3, and there are exactly two points on the boundary with lab&sand
exactly two points with labeld4,3. Each such pair of points is such that one almost
completely labelled point has the opposite orientation of the other almost completely

labelled point.

Hence, every (small) perturbation that makes the payoffs of player | generic yields
a game with equilibria involving strategidsor 7 and whose indices add up to zero.
Take, for example, the original game as in Example 2.3. This game is a perturbation
of player I's payoffs in strategie$and?7, and has two equilibria using strategies with
labels4 or 7 and whose indices add up to zero. Multiplying the column# oépre-
senting strategie$ and7 with some small constamt> 0 yields a game with the same

combinatorial properties that is close to the original game (see also Lemma 6.4).

The problem is that, in general, degeneracies occur in the payoff matrices of both
players. Furthermore, components (and hence their duals) are not necessarily homeo-
morphic to some simplex. This limits the direct application of the dual construction

to general components of equilibria. Consider, for example, the following game con-
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Figure 5.6: The dual of the componentin (5.4)

structed by Kohlberg and Mertens (1986):

1,1 0,-1 -1,1
~-1,0 00 -1,0 (5.5)
1,-1 0—-1 —-2,-2

In this example, the equilibrium component is a cycle, both in player I's as well as
in player II's strategy space. It can easily be verified that the component in (5.5) has
index +1. It is the unique component, and strategleand 4 weakly dominate the
other strategies, so a slight perturbation only leaves one pure strategy equilibrium. The
dual construction cannot be applied directly, since neither the “vertices’nor the
“vertices” inY are well-defined, i.e. they have more than three labels. For example,
the “vertex” corresponding to pure stratehypy player | has labelg, 3 (the unplayed

strategies) and, 6 (best replies). Thus neith&”™ norY* are well-defined.

Nevertheless, there are ways of still applying the dual construction to such compo-
nents. Take am x n bimatrix game (withm < n). Then the payoffs for, say, player II,
can be made non-degenerate by small payoff perturbations. |Xkeris well-defined
for the perturbed payoff matriB. This then yields the mappint and a division of
X% | into labelled regions. The drawback of this approach is that the dual construction

IX%| and hence® are not independent of the payoff perturbations used for player Il.
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Chapter 6

Index Zero and Hyperstability

This chapter shows that outside option equilibrium components that have index zero
are not hyperessential. This yields a characterisation of hyperessentiality of outside
option equilibrium components in terms of the index: An outside option equilibrium
component is hyperessential if and only if it has non-zero index. In a parallel and
independent work, Govindan and Wilson (2004) show that the result presented here for
outside option equilibrium components also holds for general equilibrium components
in N-player games. The merit of the approach presented here is that it requires only

basic tools from algebraic topology and provides a geometric intuition.

An equilibrium component is said to lessentialf for every small perturbation of
the game there exists an equilibrium of the perturbed game that is close to the compo-
nent (Wu and Jiang (1962); Jiang (1963)). Kohlberg and Mertens (1986) extend the
concept of essentiality to perturbations of all equivalent games, i.e. games obtained by
adding convex combinations of existing strategies as pure strategies. A component is
referred to adyperessentialf it is essential in all equivalent games. They define a

component that is a minimal hyperessential componehypsrstable

This chapter addresses the question how (hyper)essentiality in a game theoretic
context and essentiality in a topological context (i.e. non-zero index) are linked (see
e.g. Govindan and Wilson (1997a;b) for a discussion). It is a well-established fact
that topological essentiality implies strategic essentiality. The converse, however, is
not true, as an example of an equilibrium component with index zero that is essential

shows (Hauk and Hurkens (2003)). However, until recently, it was unknown whether
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hyperessentiality implies topological essentiality. This question is answered affirma-
tively for outside option equilibrium components in bimatrix games by employing the

dual construction to outside option components.

The structure of this chapter is as follows. Given the similarities between the Index
Lemma and the index for outside option equilibrium components, Section 6.1 studies
index zero labellings in case of the Index Lemma. It is shown that for every index zero
boundary labelling there exists a triangulation and a labelling (subject to the division
on the boundary) such that the triangulation does not contain a completely labelled
simplex (Theorem 6.1). Section 6.2 reviews the concepts of essentiality and hyper-
essentiality, and it is shown how the results for index zero labellings apply to index
zero outside option equilibrium components. It is shown that an outside option equi-
librium component is hyperessential if and only if it has non-zero index (Theorem 6.7).
The result is based on duplicating the outside option, which yields a refinement of the
triangulation of the dual of the component. This allows one to divide the dual of the
component into labelled regions such that no point is completely labelled. This work
concludes with Section 6.3. It gives an example of an outside option equilibrium com-
ponent that is essential in all equivalent games that do not contain a copy of the outside

option (Lemma 6.10).

6.1 Index Zero Labellings

This section discusses index zero labellings for triangulatiorieef 1)-dimensional
polytopesP. Given a triangulation ofoP| into (m— 2)-simplices with a labelling. of

the vertices ofdP|, the definition of the index as in Definition 5.1 is well-defined via

the Sperner mappin§®. The Index Lemma implies that every labelled triangulation
of P that agrees with the given triangulation and labellingg®hmust contain com-
pletely labelled simplices whose orientations add up to the index of the labelling on
the boundary. This section shows that if the boundary labellingPhas index zero,
then there exists a labelled triangulationPothat agrees with the given triangulation

and labelling ordP and that does not contain a completely labelled simplex.
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Let P be an(m— 1)-dimensional polytope. Furthermore, |8P| be a triangulation
of P into (m— 2)-simplices together with a labelling of the vertices|@P|. This
defines the Sperner mappirfg on the boundaryP as in (3.1). The index of the
boundary labelling is defined as the degred®festricted to the boundary and counts,
for a given labek € I, the almost completely labelled points on the boundary with
labelsl — {k}, accounting for their orientation. The following results for labellings as
in the Index Lemma might not be new (Theorems 6.1 and 6.3). The author, however,

is not aware of results as stated below in the literature.

Theorem 6.1 Let |0P| be a labelled triangulation odP into (m— 2)-simplices with
index zero. Then there exists a labelled triangulatiPhthat agrees with the given
labelled triangulation of the boundary and that does not contain a completely labelled
simplex.

Proof. Let fgp denote the restriction dff> to the boundary. The fact theleg f‘gp =0

implies thatf S, is homotopic to some constant map via a homotofsee e.g. Bredon

oP
(2994, 11, C(lrollary 16.5 and V, Lemma 11.13)). This means that, x, wherex
denotes some constant map. In other words, there exists a mappidig x [0,1] —
d0A™ 1 such thath(x,0) = fS(x) andh(x,1) = « for all x € dP. Sinceh is constant

on 0P x 1, one obtains a mapping, which is also denoteth,&som oP x [0, 1]/N(,71)

to aA™ 1, wheredP x [0, 1]/~(.71) denotes the quotient space that is generated by the
equivalence relation that identifiés 1) with a single point; the spa@® x [0,1] . 4

can be thought of as a “cone” ovél, which is homeomorphic tB.

Figure 6.1: The cone oveP

This is depicted in Figure 6.1 f&? being the2-dimensional disk. The boundary of
the disk is thel-dimensional spherg'. ThenS' x [0,1] is a cylinder as depicted on the
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left. ldentifying (-,1) with a single point yields the “cone” as depicted in the middle,

which is homeomorphic to the-dimensional disk depicted on the right.

Thush can be seen as a mappihg P — dA™ ! that agrees withfS on the
boundary. This is a well-known result that states that a mapping from thémritl)-
sphere to the unifm— 1)-sphere that has degree zero can be extended to a mapping
from the unitm-ball D™ to the unit(m— 1)-sphere. The result goes back to Hopf (see

e.g. Bredon (1994) as cited above).

The mappingh divides P into labelled regions which are the pre-images of the
regions inA™ 1. This is depicted in Figure 6.2. Now choose a triangulatior of
with no vertices on the boundary other than the original vertice8RonThis can, if
necessary, be achieved by adding a single vertex in the cen®esofceP is convex.
Next, choose an iterated pseudo refinement of this triangulation that allows vertices on
the boundary and that is such that each simplex is smaller in diameter than some given
0 > 0. Now label every vertex in the interior ¢f| according td_(v) € L(h(v)), where
L(h(v)) are the labels of the image wofin AT (see Figure 6.2). There is no point
on the boundarg A™-1 that has almlabels, so no simplex in the refinement can have
more tharm— 1 distinct labels, as long as the simplices are sufficiently small. Notice

that, sinceP is compact, the mappingis uniformly continuous.

Figure 6.2: A labelling with index zero

Finally, one has to get rid of the vertices that were added to the boudBaikhis
works in the same way as in Lemma 4.4, since the labelling of vertices on the boundary

is consistentThat is, if a vertex lies on ark-face of the original triangulation spanned
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by original verticesv,...,Vk, thenL(v) € {L(v1),...,L(w)}. This is the labelling

equivalent to the consistency as in Definition 4.3.

So let the vertices that were added by the iterated pseudo refinement bev,,
and letA be the ordered index set of the vertices that were added to the boundary. Let
v be a vertex on the boundary. Ther= S!_; v with p > 0, for somevy,...,v.
In particular, the labelling satisfidgv) = L(v;) for somei € {1,...,1}. So the face
spanned by{vi,...,Vi_1,V,Vi+1,...,Vk} has the same labels as the face spanned by
{V1,...,Vi—1,Vi,Vi+1,...,Vk}. A simplex spanned byvy,...,Vi_1,V,Vii1,...,V} and
some {Vki1,...,Vm} is fully labelled if and only if the simplex spanned by

{V1,. . Vi1, Vi, Vit1, - .., Wi} and{ Vi1, . .., vim} is fully labelled.

So the vertices that were added by the iterated pseudo refinement and that lie on
the boundary oBP can be removed (in reverse order) to obtain a refinement with no

vertices added to the boundary and no completely labelled simplex. O

Remark 6.2 In Figure 6.2, the Sperner mappirfg on the boundary has index zero,

but is onto. Suppose one is restricted in subdividtdror example, assume a trian-
gulation |P| with the same boundary labelling as in Figure 6.2, but that has only one
vertex in the interior oP. This is depicted in Figure 6.3. Then every labelling of the
interior vertex yields (pairs of) completely labelled simplices. The reason is that the
interior vertex is connected to all boundary faces. For every l&bel{1,2,3}, there

are faces on the boundary with missing lakgethat is, faces with label%,2 or 2,3

or 1,3. These almost completely labelled faces come in pairs of opposite orientation
because of the index zero property. Thus, in the restricted case, one always obtains
completely labelled simplices whose orientations add up to zero. In the next section,
it is shown how this restricted case compares with the essentiality of an equilibrium
component as in the example by Hauk and Hurkens (2002), and how the unrestricted

case compares with the hyperessentiality of an equilibrium component.

For non-zero labellings one obtains the following result.

Theorem 6.3 Let|0P| be a labelled triangulation adP with indexk. Then there exists

a labelled triangulation|P| that agrees with the given labelled triangulation of the
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Figure 6.3: A labelling with index zero and a restricted triangulation

boundary and is such thaP| contains|k| completely labelled simplices, each with

orientationsignk.

Proof. The idea is to divideP into labelled regions such that there exist exagtly
completely labelled points iR with orientationsignk. This division is then covered

by small simplices.

Choose a subsé in the interior ofP that is homeomorphic to afm— 1)-ball.
Define a mappind sg on the boundary oB that maps the boundary & on oAm-1
and that is such that each almost completely labelled point on the boundaw) df
has exactlyk| pre-images irdB with orientationsignk. Such a mapping exists and
can be constructed as follows. Identify the bound2Bywith the unit spheres™1.
For (xq,--+ ,Xm) € S™+1 the tuple(x1,x2) can be seen as a complex numbeand the

mappingfios(z.Xa, -+ . Xm) = (Z,Xa, -+ ,Xm) will do.

The mappingdf g has the same degree as the Sperner mapipirmy the boundary
of P. Hence, the mapping® restricted to the boundagP and flag are homotopic via
some homotopy, denoted AsThe homotopyh can be identified with a mapping from
P — B to dAM™ 1, since[0,1] x dP is homeomorphic t&® — B. Note thatdB and dP
are homeomorphic t8A™ 1, and are hence themselves homeomorphic. This yields a
division P— B into labelled regions with no completely labelled point. Label the region
B with some arbitrary but fixed label. Then the divisionRinto labelled regions is
such that there exist exactll| points that are completely labelled. These lie on the

boundary ofB. This is depicted in Figure 6.4 for a boundary mapping with ingéx

From here, the proof follows the same lines as the proof of Theorem 6.1. Cover

P with sufficiently small simplices and label the vertices according to the regions they
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Figure 6.4: Obtaining a division with exactlly| completely labelled points

are contained in. The vertices that are added to the boundd\cah be omitted by

the same argument as in the proof of Theorem 6.1 and Lemma 4.4. ]

As explained in Chapter 5, there are strong similarities between the situation in
the Index Lemma and outside option equilibrium components. The next section shows
how the results from above translate into the game theoretic context and how one can
divide the dual of an outside option into best reply regions, given the boundary division,
such that it does not contain a completely labelled point, i.e. an equilibrium. This can

be achieved by duplicating the outside option only.

6.2 Index Zero Outside Option Equilibrium Compo-

nents

In this section, it is shown that an outside option equilibrium component (in a bimatrix

game with generic outside option) is hyperessential if and only if it has non zero index.
It is also explained how the results of the previous section fit in the game theoretic
context. Before proving the main result of this section, the concepts of essentiality and

hyperessentiality are briefly reviewed.

Wu and Jiang (1962) define essential fixed points. The extension to compact sets
of Nash equilibria is described by Jiang (1963), and is also discussed in van Damme
(1991, Section 10.2). In analogy to the concept of essential fixed point sets (Fort
(1950)), an equilibrium componeft of a gameG is calledessentialif and only if

for every small payoff perturbation of the gar@ethere exists an equilibrium of the
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perturbed game that is close@o A gameG is called an equivalent game ®&if G can
be obtained front by adding a finite number of convex combinations of strategies of
G as pure strategies. In other words, the ga@endG have the same reduced normal

form. For example, the two games shown below are equivalent.

10,10 00 55 33
G 1010 00 ., G=|00 1010 55 7.7
%0 1040 1,1 99 55 £

A strategy in an equivalent game can be interpreted as a strategy of the original game
and vice versa by rescaling the probabilities for the strategies. An equilibrium com-
ponentC of a gameG is referred to adiyperessentiaf it is essential in all equivalent
gamesG. Kohlberg and Mertens (1986) define a Satshyperstabléf it is minimal
with respect to the following propertysis a closed set of Nash equilibria 6f such
that, for any equivalent game, and for every perturbation of the normal form of that
game, there is a Nash equilibrium closeSolt follows that a hyperessential equilib-
rium component must contain a hyperstable set (Kohlberg and Mertens (1986)): Let
F denote the family of subsets of a single connected component that is hyperessential,
ordered by set inclusion. Every decreasing chain of elemeriishias a lower bound,

and therefore, applying Zorn’s Lemma, the fanflymust have a minimal element.

It is a well-established fact that non zero equilibrium components are both essen-
tial and hyperessential. The index of a Nash equilibrium component is invariant under
addition or deletion of redundant strategies Govindan and Wilson (1997a, Theorem 2;
2004, Theorem A.3). Therefore the index of a component is the same in all equiv-
alent games. Since the index measures the sum of indices of equilibria close to the
component if the game is slightly perturbed, a non-zero index implies both essentiality
and hyperessentiality of the component (see also Section 1.3 for the properties of the

index).

Whether the converse is also true was an open question until recently. In fixed
point theory, a component of fixed points under a mapgimngcalled essential if every
mapping close td has fixed points close to the component. O’Neill (1953) shows that
a fixed point component is essential if an only if it has non-zero index. In game theory,
the Nash equilibria can be described as the fixed points of a map. A perturbation of the

game yields a mapping for the game that is close to the original fixed point mapping.
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So the question arises whether, by suitably perturbing the game, one can show
equivalence between strategic and topological essentiality. Referring to the results of
O’Neill (1954), Govindan and Wilson (1997b) write: “The resolution of this puzzle is
important for axiomatic studies because in a decision-theoretic development it would
be implausible to impose topological essentiality as an axiom unless it is provable
that the space of games is rich enough to obtain equivalence between strategic and

topological essentiality.”

Hauk and Hurkens (2003) found an example of a bimatrix game with an outside
option in which the outside option equilibrium component has index zero and that is
nonetheless essential. This shows that game theoretic and topological essentiality are
not equivalent. If restricted to perturbations of the original game, the space of games
is not rich enough to obtain equivalence between topological and strategic essential-
ity. However, their example fails the requirement of hyperessentiality. So the ques-
tion arises whether the concept of hyperessentiality is the game theoretic equivalent of

topological essentiality.

In this section, it is shown that this is the case for outside option equilibrium com-
ponents with a generic outside option. Furthermore, it is demonstrated why an index-
zero component can be strategically essential, but not hyperessential. Comparing it
with the case of the Index Lemma, essentiality compares with a triangulation in which
one is restricted in the number of simplices in the subdivision, and hyperessentiality
compares with the unrestricted case (see Remark 6.2). Govindan and Wilson (2004),
in a parallel and independent work, show that index zero components cannot be hyper-
essential in general. Their approach is discussed at the end of this section. The merit
of the proof presented here is that it only needs basic tools from algebraic topology.
Also, since the dual construction can easily be visualised, it also provides a geometric

and combinatorial intuition for the result.

The idea of the proof can be explained by considering an example of an outside
option equilibrium component that is essential but not hyperessential. Such an example

is given by the game in (6.1). This is the game by Hauk and Hurkens (2002) showing
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that topological essentiality is not the equivalent of topological essentiality.

45 0-23 2-1 00

0,—15 8-1 —-2,-21 00 (6.1)

2-11 13 31 0,0
The dual construction for this game is given in Figure 6.5. The dual payoff map-
ping f£, restricted to the boundary of the dual of the outside option component, has
degree zero. The image does not complete a full cycle. Hence, the outside option
equilibrium component has index zero. This can also be verified by a simple counting
argument. There is only one other equilibrium of the game, namely the pure strategy

equilibrium with payoffs(4,5).

Figure 6.5: An index zero essential component

Hauk and Hurkens show that the component is essential. It should be noted that
only payoff perturbations of the payoffs for player I in the outside option are of impor-
tance. All other payoffs are generic. Looking at the dual construction of the game, it

can be seen that the restricted dual payoff maprﬂl?&g& : C2 — X2 is such that the

A

image off|aCA

“wraps” completely around,, but does not complete a full cycle.

A more detailed depiction of the image quA is given in Figure 6.6. The image
of f|§CA consists of a union ofm— 2)-simplices inX”. These are the images of the
faces ofC®, and are depicted in bold dashed lines. In the figusg,is the image under
2 of the vertex inX” that represents best reply regi®ut in X, and the vertices,
are the images of the vertices Xt* that represent a best reply region with labek

an unplayed stratedyin X (I = 2,5, 6).

Now suppose one perturbs the payoffs in the outside option. Ihgties close to

V.. Consider, for example, a perturbation@fit such that strategy of player | is the
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Figure 6.6: The essentiality of the component

best reply toOut. Thenvgy lies in the region with label close tov,, as depicted in
Figure 6.6. So there are two simplices in the imag€fthat containv,, namely the
simplex spanned bys, vg andvoy: and the simplex spanned vy, vo andvp:. The
former simplex represents the vertexXdwith labels5, 6 andOut, the latter represents
the vertex inX with labels6, unplayed strateg® andOut. A similar analysis applies if
Vout lies in one of the regions with lab&lor 3. Therefore, the component is essential.

This is the game theoretic counterpart to the situation described in Remark 6.2.

It should be noted, however, that it is not sufficient to just count the almost com-
pletely labelled points on the boundary of a component to see whether a component
is essential or not. The payoff mapping is generally more complex than the Sperner
mapping, since the payoff vectors are generally not unit vectors. Consider, for exam-
ple, the component depicted in Figure 6.7. This component is similar to that of game
(6.1). The difference is that the payoffs for player I in the column of (6.1) representing
strategy6 are modified such thaf is shifted to the left compared witg in Figure
6.6. There are two points on the boundan@Géf with labels1, 2, two with labelsl, 3
and two with label®, 3, and each pair is such that the points have opposite orientation.
But the component is not essential. There is a “gap” in the image arounid the
perturbation of the outside option for player | were such ikat lies in the shaded
area as depicted, then there would not exist an equilibrium thatuse#\ necessary
and sufficient condition for the essentiality of a component is that the retraction of the

image ofdC” is onto. The retraction is defined as on page 112 for components and is

A
locA

retraction as the intersection of the line betweemnd p, in the direction ofp, with

similar to that described in Lemma 4.5:fis a point in the image of define the
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the boundary<”. This condition ensures that there is no “gap” in the imagaGst,

so the image “wraps” completely around

Figure 6.7: A non-essential component

Now suppose one duplicat€sit and perturbs the payoff for player Il such that the
original regions inX whereOut is a best reply is divided as depicted in Figure 6.8.
This yields two vertices in the dual construction that are associated with the outside
option. Hence, by looking at equivalent games in whanlt is duplicated, one obtains
“richer” divisions of C® into best reply regions. For example, if one makes strafegy
of player | the best reply t@ut;, and strategyl the best reply t@®ut,, one obtains a
perturbation of the equivalent game that has no equilibrium close to the component.
The associated labelled dual of this perturbed equivalent game is illustrated in Fig-
ure 6.8. Since there is no completely labelled point in the dual of the outside option,
there is no equilibrium that involveSut, and hence no equilibrium close to it. The

associated payoff perturbations are given in (6.2).

45 0-23 2-1 00 &0
0,-15 8-1 —-2,-21 &0 O¢ (6.2)
2,-11 13 31 02 00

The method of duplicatin@ut is the underlying idea in the proof of Theorem 6.7.
The idea is to divide the dual of the component into labelled regions such that there
exists no completely labelled point, as in Theorem 6.1. One then has to show that
such a division can in fact be created by duplicatiwg and perturbing the payoffs in

the duplicates 0Out. DuplicatingOut and perturbing the payoffs for player Il in the
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Figure 6.8: Duplication of the outside option

duplicates refines the triangulation®f* into simplicesv®. The difference to Theo-
rem 6.1 is that the new vertices are close to the vertex represédindg’erturbing the
payoffs for player I then divides the simplices in the refined triangulation into labelled
regions. Unlike the proof of Theorem 6.1, this is achieved by assigning payoffs to the

vertices, as opposed to assigning labels.

Consider an outside option game with a generic outside option for player II. It
is first shown that the magnitude of the perturbations for player I in the outside op-
tion does not matter when analysing the essentiality of an outside option equilibrium
component. The following lemma shows first that the combinatorial divisio)ﬁﬁ)f
into simplices and labelled regions is invariant under multiplying payoff columns of
player | with some positive constant. Twox n games are referred to asmbinatori-
ally equivalentif both yield combinatorially equivalent triangulatiop$”| and if the

divisions of the simplices in the triangulation are combinatorially the same.

Lemma 6.4 Let G be anm x n bimatrix game represented by payoff matrideand
B. LetG be represented b = [A1Aq, ..., A\nAy] and B, where\j > 0, for j=1...,n.

ThenG and G are combinatorially equivalent.

Proof. LetA1 > 0andA; =0for j # 1. Let(x,y) be a Nash equilibrium oB. Define
Yy = (i’—i,yz, ...,¥n). Rescaling/ such that it lies irY yieldsy such thatx, §) is a Nash
equilibrium of G. Continuing in the same fashion with the otigryields the desired

result. [l

Lemma 6.4 shows that the combinatorial equilibrium properties of a game are un-

affected if a column ofA or a row ofB is multiplied by some positive constant. One
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just has to adjust the weights on the strategies to account for the multiplication of the
columns and rows. It also shows that the combinatorial structupé‘ofand the com-
binatorial divisionX’" is invariant under such operations. As a corollary one obtains

the following result.

Corollary 6.5 LetG be a game with outside option for player Il in which the outside
option equilibrium component has index zero. Gebe obtained fronG by copying
Out a finite number of times. If there exists a perturbationGofvith small payoff
perturbations for player Il and large payoff perturbations for player I in the copies of
Out such that there is no equilibrium that plays a copyorit with positive probability,
then there exists a small perturbation@fsuch that there exists no equilibrium close

to the outside option equilibrium component.

Proof. Without loss of generality it can be assumed that the payoffs to player I in the
outside option are zero. Adding or subtracting some constant to the payoff columns
of A does not change the best reply properties. The payoffs for playeGIdan be

described as follows.

A 5

Al?"'7Anfl ‘ AOUtl AOutk
|

Let (y'",y°") be a strategy profile that makes player | indifferent between best reply

strategiesy, ..., ix. Now multiply the columnsioy; by somee > 0, and consider the

ut
strategy(%, yoit/s), wherec = ¥ ; y'jn + 3 y'% Then strategie, . . ., ik are still the
best reply strategies. Thus one can easily switch from large perturbations to small
perturbations for player | in copies @fut, and vice versa, without changing the equi-

librium properties of the game. O

The proof of Theorem 6.7 below uses a similar argument as in Corollary 6.5 for the
payoff perturbations for player Il in the copies@tt. In the proof of Theorem 6.7 one
divides the dual of an outside option into smaller simplices by adding vertices. These
vertices correspond to added strategies for player Il. The following lemma shows that

one can obtain a combinatorially equivalent refinement such that the added vertices are
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close to the vertex representi@ut. Any two vertices that are close have payoffs to
player Il that are close. This follows from Lemma 2.2. Two triangulations with vertices
Vkek andv,, are calledcombinatorially equivalenif the affine linear extension of
g(w) = v, k € K, on the vertices is an isomorphism that maps simplices on simplices

and faces on faces.

Lemma 6.6 LetC” be the dual of an outside option equilibrium component, and let
Vout denote the vertex iB” representingdut. Consider an iterated refinement®f
with no vertices added to the boundary®@f. Then there exists a combinatorially

equivalent iterated refinement in which the added vertices are clogg,to

Proof. The proof is by induction on the number of added vertices. NoteGhats

star-shaped (see page 111). So the case is clear for just one added vertex.

Now suppose one has an iterated refinement witlllded vertices. Consider the
refinement that is obtained by adding the fikst 1 vertices. For this refinement, there
exists a combinatorially equivalent refinement whth 1 vertices close tooy. The
vertex added last in the iterated refinement lies in some simplex in this refinement
(which might not be unique, in case it lies on some face). This simplex corresponds
to a simplex in the refinement where all vertices are closestg Hence, one can
add a vertex close tapt to thek — 1 other vertices close tao,: in order to obtain a

combinatorially equivalent iterated refinement. ]

The following theorem is the game theoretic equivalent of Theorem 6.1. The index
is given by a division of the boundary into labelled regions. If the index is zero, this
division can be extended to a division ®f such that no point ilC> is completely
labelled. As in the proof of Theorem 4.6, one then has to account for the restriction
imposed by the game theoretic context. In particular, one has to show that this division
can be achieved by perturbing an equivalent game in wBighis duplicated a finite

number of times.

Theorem 6.7 LetC be an outside option equilibrium component in a generic outside

option game. The@ is hyperessential if and only ifC) #£ 0.

Proof. Without loss of generality assume that all payoffs for player | are positive and

that the payoffs in the columns #fadd up to 1, i.e|A;| = 1 (this can be achieved by
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first adding a suitable constant to each column and then scaling; see Section 3.3). Let
I(C) = 0, so the dual payoff mappingﬁCA has degree zero. Instead of considering
the dual payoff mappingﬁcﬁ, it is more convenient to consider the payoff mapping

f and its restrictionf 5. to the boundarngC”. Note thatf” is simply1d® o f. In

A
ocs

f|acA completes a cycle around. Therefore, the mappingaCA has also degre@

particular, the image of completes a cycle around if and only if the image of

It follows that f‘aCA is homotopic to some constant masee e.g. Bredon (1994,
II, Corollary 16.5 and V, Lemma 11.13)), where the constant lies on the boundary of
A1 First the mapping can be retracted to the boundar:Bf! (see Lemma 4.5
and p. 112), and can then be deformed into a constant map @dhg. Let this
homotopy be denoted & Soh: aC”® x [0,1] — A™ 1, andv, does not lie in the

image ofh.

Figure 6.9: A homotopy for outside option equilibrium components

As in the proof of Theorem 6.1, the mappirfngCA extends to a mapping o®*
such that no point is mapped an. This can be seen as follows. The homotopy is
constant or{dC*, 1). This yieldsh: (dC* x [0,1]) ~(.1) — A™ %, wheredC” x 1is
identified with a single point. The dual compon@tt is star-shaped (see page 111),
so(aC” x [0, 1]) /~(.,1) is homeomorphic t€~. This gives a mapping, also denoted as
h, that map<® — A™ 1 such that, does not lie in the image &¢f. The pre-images
of the labelled regions il\™ 1 now divideC” into labelled regions such that no point
in C2 is completely labelled. This is depicted in Figure 6.9 for the component in the

example (6.1).

One now has to show that such a division can be achieved in a game theoretic

context as a division into best reply regions by refining the triangulatid®“ofind
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choosing the payoffs for player | accordingly. For this, as in the proof of Theorem 4.6,
choose an iterated pseudo refinement of the triangulatid®ofhat allows one to

add vertices to the boundary 6. Now assign a payoffi(Vv) to each vertex in the
iterated pseudo refinement. Then the paybffg for vertices added to the boundary
are consistent with the payoffs for the original vertices on the bounda®y ofif the
simplices in the refinement have a sufficiently small diameter, the image of a simplex
is a simplex inA™1 that does not contain,.. This is ensured b being uniformly

continuous.

Now delete all vertices that were added to the boundariC6f. According to
Lemma 4.4, this does not create completely labelled points, and, by Lemma 4.2, yields
a regular triangulation. This results in a division@#t as depicted in Figure 6.10 for

the component in the example (6.1).

Figure 6.10: An approximation of the homotopy

So far, one has created an extended game in which strategies for player Il are added
(see Lemma 3.12). Each added vertex corresponds to an added strategy. The corre-
sponding payoffs to player Il in the added strategies are determined by Lemma 2.2, and
those for player | are given by the value of the homotopy at the vertex that represents
the added strategy. The extended game is such that n€titaeror any of the added

strategies are played in an equilibrium.

It remains to show that a similar game, 1.e. one that yields a combinatorially equiv-
alent division ofC2 into simplices and best reply regions, can be created as a perturbed
equivalent game. This is achieved by duplicatiigt and perturbing the payoffs in the

copies ofOut.
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Let wek be the set of vertices added, whe€eis an ordered set, reflecting the
order in which the vertices were added. From the above construction each wertex
has a payofh(v). Lemma 6.6 shows that there exists a combinatorially equivalent
refinement of22 in which all added vertices lie close %, the vertex representing
Outin C~. Let the set of the vertices in this refinement be denoteq, gs wherev

is close tovoyt and corresponds .

Now assign the payoffl(vk) to vertexvi. This yields a division oC* into best
reply regions that is combinatorially equivalent to the original division. In particular,
it does not contain a completely labelled point. This is depicted in Figure 6.11 for the

componentin (6.1).

Now every vertex inX”| that is close to the vertexoy has payoffs to player II
that are close to the payoffs Gfut to player Il if the regular triangulation is translated
into an extended payoff matr® (see Lemma 2.2). SB' consists oB and perturbed
copies ofOut. As for the payoffsh(v,) for player I, Corollary 6.5 shows that one can
make them arbitrarily small without creating equilibria. Hence, one created a game
that is a perturbed equivalent game in which the outside option is duplicated a finite

number of times. [l

Figure 6.11: Adding vertices close ¥g

In the same way as an outside option equilibrium component with index zero might
be essential (i.e. having at le&t(l > 0) equilibria for every small perturbation), an
index k outside option equilibrium component might hake+ 21 (I > 0) equilibria
for every small perturbation of the original game. Using the dual construction, such an

example would be easy to create3(a n game would be sufficient for that). Allowing
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perturbations of equivalent games, one gets, similarly to Theorem 6.3, the following

result.

Proposition 6.8 LetC be an outside option equilibrium component with intg) =
k. Then there exists an equivalent game and a perturbation of the equivalent game

such that there are onljk| equilibria close taC and whose indices add up ko

Proof. The proof follows the same lines as the one of Theorem 6.7, and is the game
theoretic equivalent of Theorem 6.3. If the index of a componeh(G$ = k, then

there exists a homotopy between the payoff maprfigtgg and a mapping that maps

an (m— 2)-ball exactlyk times around itself. This homotopy is used to divigie into
labelled regions such that there exist exatil\completely labelled points i6” with

local degreesignk (as in the proof of Theorem 6.3). Then this divisionG@f can be
imitated by duplicatingut a sufficient number of times and choosing the payoffs for

player | accordingly, just as in the proof of Theorem 6.7. O

Section 5.3 above discusses the limits of the dualisation methods with respect to
general components of equilibria. Problems arise from the fact that, in general, de-
generacies occur in the payoff space of both players. Therefore, the above method is

insufficient to prove that general index zero components cannot be hyperessential.

In a parallel and independent work, Govindan and Wilson (2004) show that an
equilibrium component has non-zero index if and only if it is hyperessential. Their
results are based on results from fixed point theory and apply to geNepkdyer

games, and their proof uses highly technical arguments.

In fixed point theory, a fixed point component of a mappfnig called essential if
every mapping close td has fixed points close to the component (Fort (1950)). Itis
a well-known result in fixed point theory that if the fixed point index of a component
is zero, and if the underlying space is “well behaved”, then there exists a fixed point
free mapping close to the original mapping (O’Neill (1953)). In game theory, the Nash
equilibria can be described as the fixed points of a suitable mapping. A perturbation
of the game yields a mapping for the perturbed game that is close to the original fixed
point mapping. The Hauk and Hurkens example and the example presented in the next
section, however, show that just considering perturbations of the original game is not

sufficient to obtain equivalence between strategic and topological essentiality.
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The index of a component is the same in all equivalent games (Govindan and Wil-
son (1997a, Theorem 2; 2004, Theorem A.3)). By considering equivalent games, one
increases the space of possible perturbations. Thus the space of mappings that can be
obtained from perturbing equivalent games increases in dimension. This is the under-
lying idea in the proof of Govindan and Wilson for general components of equilibria.
The authors show that, if allowing equivalent games, the space of games, i.e. the space
of perturbed equivalent games, is rich enough to obtain equivalence between topolog-

ical and game theoretic essentiality.

The authors start from a map that has no fixed points close to the component.
Such a map exists after O’Neill (1953). From this map the authors create a perturbed
equivalent game that is such that the Nash map for this game, i.e. the mapping that
describes the Nash equilibria of the game as fixed points, copies the properties of the
original fixed point free map. That is, the Nash map does not have fixed points close
to the component. Thus a component is hyperessential if and only if it has non-zero

index.

In essence, the key idea of the approach by Govindan and Wilson and of the ap-
proach presented here is the same. One has the existence of mappings with certain
properties. For outside option components, the mapping does not map a point in the
dual of the component to the completely labelled point. Considering the parallels with
the Index Lemma, the index reflects a combinatorial property of the component. In the
case of Govindan and Wilson, one has a fixed point free mapping. The index describes
a topological property of the component. By adding redundant strategies it is shown

that the these mappings can arise as mappings from a perturbed equivalent game.

Remark 6.9 The combinatorial nature of the approach presented above is such that,
by duplicatingOut, one create®ne equivalent game such that, for al> 0, there

exists a perturbation of that game smaller thauthat has no nearby equilibria. In
particular, the equivalent game is independent.oT his is not the case for the equiv-
alent game constructed by Govindan and Wilson (2004), where the equivalent game
depends ore. Typically, one has to add more and more redundant strategies as

becomes smaller.
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6.3 Restricted Duplication of Strategies and Index Zero:

An Example

Hauk and Hurkens (2002) show the non-hyperessentiality of the component in the
game (6.1) by adding a convex combination of strategies as a new strategy for player I,
i.e. not by duplicatingOut. The added strategy is a convex combination of stratelgies

and2 (for details see Hauk and Hurkens (2002)).

This section provides an example of an index zero outside option equilibrium com-
ponent that is not only essential, but is essential in all equivalent games that do not
contain a duplicate dDut. It shows that duplicatin@ut is not only sufficient, but in
cases also necessary to create an equivalent game in which an index zero outside op-
tion equilibrium component is not essential. For general index zero equilibrium com-
ponents, this suggests that it is necessary to add redundant strategies for both players

in order to create an equivalent game in which the component is not essential.

The example is constructed as follows. Consider the following game.

0 HZ 0 09
G0 = , (6.3)
0 H- 0,9
with
13,13 7,12 114
, [1010 00 -
H* = : H =|127 88 21]|. (6.4)
0,0 1010

141 12 11

GameG? is the same as the game in (1.18) in Section 1.4. The2 gameH? in

the upper left part irG° is a2 x 2 coordination game, and ttf8x 3 gameH~ in the
lower middle part ofc° is a game where the mixed strategy equilibrium in which both
players mix uniformly between their first two strategies yields the highest equilibrium
payoff, which is10to both players (see also (1.13) and (1.16) for further discussion).
In Section 1.4, it is shown that the outside option equilibrium component of the game
G? has index 0. The only equilibria that are not “cut off” by the outside option are the
pure strategy equilibria it12 and the mixed strategy equilibrium K~ with payoff
10for both players. The two former ones have indek the latter one has index1.

Hence, the outside option equilibrium component has index 0.
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Lemma 6.10 The outside option equilibrium compon@i{G°) of the game in (6.3) is
essential in all equivalent games that do not contain a duplicateutf In particular,

the component is essential.

Proof. Consider the game&? andG 1 as below.
- Hiz O . He
G1l= S G*= : (6.5)
0,0 49 0,0 g9

Then the outside option equilibrium component§&handG 1 are both essential and
hyperessential. The gamé&& andG ! are variants of the gam&? as in (1.15) and

G lasin (1.17). By the same reasoning as in Section 1.4, it is easy to verify that
C(G?) has index +2, and th&t(G 1) has index—1, whereC(-) denotes the outside
option equilibrium component of a game. Thus b6(t:2) andC(G 1) are essential

and hyperessential. Now consider the equivalent game, denot®y &swhich one

adds convex combinations for player I. Then every such game is of the form

H*2 0,0 0,9 |
£9 <9 !
G=| <9 <9 : |, (6.6)
<9 £9 009
0,0 H !

where the entry£ 9’ means that at least one payoff for player Il in that part of the
game is larger than 9, ang’9’ means that all the payoffs for player Il in that part of
the matrix are less than or equal to 9. Note that the payoff$fid andH~ are such

that a convex combination does not allow entries larger than 9 in both parts of a row,
i.e. in both theH "2 and theH ~ part of a convex combination of original columns. It is
now sufficient to consider only payoff perturbations for player | in the outside option,
since all other payoffs of the gan@&® are generic. Let the perturbation vectors of
player I's payoffs in the outside option be denotectbye™ ande! for perturbations in

the upper, middle and lower part of the game (6.6). Without loss of generality it can be
assumed tha! > 0, €™ > 0 ande! > 0. It can also be assumed that the perturbation
IS generic, i.e. there is a uniqgue maximal perturbation. Suppose there were two (or
more) maximal perturbations. If one is among #Yeand one among thel, then

player I mixing uniformly between the strategies with the maximal perturbation and
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player 1l playingOut is an equilibrium closé:(éo). All other cases of non-generic

perturbations are covered by the three cases below.

1)

2)

The maximal perturbation is among te8. In this case, player | playing the
strategy with that maximal perturbation and player Il play@gt is an equilib-

rium close taC(GP).

The maximal perturbation is among téfe Then consider the game consisting
of the first two strategies of player Il ar@ut and the strategies as in (6.6) for

player I, with payoffs and perturbations as above, i.e. consider

I H+2 €9 ]
£9
€79
€9
<9
0,0

T is an perturbed equivalent form of the gat@e? in (6.5). SinceC(G‘l) is
hyperessential, there exists a strategy paly) that is an equilibrium close to the
outside option equilibrium compone@(é*l). Itis now shown that this strategy
pair, if interpreted as a strategy pair of the ga@feis also an equilibrium close

to C(GY). First consider player |. By construction, player | has no incentive to
deviate from the strategy, seen as a strategy of the ga®@ as in (6.6), if

player Il plays strategy as a strategy of the gan@®.

It remains to show that player Il has no incentive to deviate fypreeen as a
strategy for the gam&? via the mappingy1,y2,You) — (Y1,Y2,0,0,0,Yout)-

The strategy profile is such that the first two strategies of player Il must yield

a payoff of less than or equal to 9, where at least one must yield a payoff of 9.
Otherwise, player Il would pla@ut only, and this cannot be an equilibrium for
the gamel due to the maximal perturbati@h But, by the choice of the payoffs

in the gamedH*2 andH~, this means that the other strategies of player II’s
(except forOut) cannot be best replies againsti.e. they all yield a payoff
strictly less than 9. This is because either the first strategy of player | or the

second strategy of player | must have a weight of aro%ldThis implies that
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the remaining weight is not sufficient to yield an expected payoff larger than 9 for
player Il in the other strategies (except fréut). Thus(x,y) is an equilibrium

of the game®, which is also close t€(GP).

3) The maximal perturbation is among ttle Then consider the game consisting
of the third, fourth and fifth strategy of player Il alt and the strategies as in

GO for player I, with payoffs and perturbations as above, i.e. consider

— u -
€1,9

T =<9 , (6.8)

Then the analysis is analogous to the one above. The Jdrsea perturbed
equivalent form of the gam@? in (6.5). The componer@(éz) is both essential
and hyperessential. Thus there exists an equilibrimng) of T’ that is close
to C(G?). In the same way as above it can be verified thay) is also an

equilibrium of the gam&? that is close taC(GP).

Thus the component is essential in all equivalent games of the form (6.6). It remains
to show that it is also essential when adding convex combinations for player Il, but no
copies ofOut. For this, extend the gameas in (6.7) by three columns of zeros, and

the gameT’ as in (6.8) by two columns of zeros. Then the index of the components
in these modified games stays invariant, and the components remain hyperessential.
Now consider the gamé° as in (6.6) and add convex combinations of strategies for
player II, but no duplicate oDut. If the maximal perturbation in the outside option

lies in the upper part, the added convex combinations can be translated into convex
combinations of the modified garieby assigning the weight on columBs4, 5 to the

added columns of zerosin The component in the modified games hyperessential,

and one shows that the equilibrium close to the component in the modified Qasne

also an equilibrium of the equivalent game of (6.6). For maximal perturbations in
the lower part of the game one does the same analysis with the modifiedSjayne
treating the weights on columis2 as weights on the two added columns of zeros. If

the maximal perturbation lies in the middle part, the case is trivial. O
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Index of Symbols

Symbol

1k

Am_l

Description

vector inRX with entry 1 in every row

the standardm— 1)-simplex

standard m— 1)-simplex with canonical division
simplicial division of the standarim— 1)-simplex
division of | A™-| into labelled regions
Sperner matrix

artificial payoff matrix

payoff matrixes for player | and Il

outside option equilibrium component

dual of a component of equilibria

Sperner mapping frofA™ 1| to AM-1

payoff mapping

dual payoff mapping

best reply polyhedron

the index for equilibria as defined by Shapley
mapping identifyingk® with A™-1

set of pure strategies of player | and Il
projection ofL(-) onl

projection ofL(-) onJ

labelling function for points irX andY

lifting of w & V'™ into v2

set of L-H paths inX x Y with missing labek
the set of L-H paths iX”* with missing labek

best reply polytope
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15
16
69
65
71
71
46
15
32,110
111
70
85
86
18
25
86
15
16
16
16
53
23
51
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polar of the best reply polytope

simplicial surface of the polar polytope
labelled surface of the polar polytope
projection ofws € v© on the best reply facé”™
k-dimensional real space

support of mixed strategy

(m—1)-simplex in|X%|

best reply face of>

completely labelled point il\™ 1 andX*

set of vertices irX andY

a point inv®

the simplex containingys in X*A

mixed strategy spaces of player | and Il
enlarged strategy spaces spanne&Hfy) and0
best reply regions iX andY

unplayed strategy faces gfandY

the dual space of

dual construction

labelled dual construction
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40
49
49

48
15
16

41

47

69, 86

17

46

56

15

16

16

41
41
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